Self-similar solutions in a plasma with axial magnetic field (θ-pinch)

被引:15
作者
Jena, J. [1 ]
机构
[1] Netaji Subhas Inst Technol, Dept Math, Sect 3, New Delhi 110078, India
关键词
Lie group transformation; Shock wave; Plasma; RELAXING GAS; SHOCKS;
D O I
10.1007/s11012-011-9505-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, Lie group of transformation method is used to investigate the self-similar solutions for the system of partial differential equations describing a plasma with axial magnetic field (theta-pinch). The arbitrary constants occurring in the expressions for the infinitesimals of the local Lie group of transformations give rise to two different cases of possible solutions i.e. with a power law and exponential shock paths. A particular solution to the problem in one case has been found out.
引用
收藏
页码:1209 / 1215
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1964, SIMILARITY ANAL BOUN
[2]  
[Anonymous], 1967, PHYS SHOCK WAVES HIG
[3]  
[Anonymous], 1966, PHYS SHOCK WAVES HIG
[4]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[5]  
Bluman G. W., 1974, Appl. Math. Sci., V13
[6]  
Hydon P.E., 2000, Symmetry methods for differential equations. A beginner's guide
[7]  
Jena, 2005, APPL ANAL, V84, P37, DOI 10.1080/00036810412331297226
[8]   Lie transformation group solutions of non-linear equations describing viscoelastic materials [J].
Jena, J ;
Sharma, VD .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (10-11) :1033-1044
[9]   Lie-group theoretic method for analyzing interaction of discontinuous waves in a relaxing gas [J].
Jena, J. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (03) :416-430
[10]   Self-similar shocks in a dusty gas [J].
Jena, J ;
Sharma, VD .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (02) :313-327