Characterization of the spectrum of regular boundary value problems for the Sturm-Liouville operator

被引:4
作者
Makin, A. S. [1 ]
机构
[1] Moscow State Univ Inst Engn & Comp Sci, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Complex Number; Entire Function; Asymptotic Formula; Spectral Problem; Exponential Type;
D O I
10.1134/S0012266108030051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the interval (0, pi), we consider the spectral problem generated by the Sturm-Liouville equation with an arbitrary complex-valued potential q(x) epsilon L-2(0, pi) and with regular (but not strengthened-regular) boundary conditions. Under certain additional assumptions, we establish necessary and sufficient conditions for a set of complex numbers to be the spectrum of such an operator.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 1969, LINEINYE DIFFERENTSI
[2]  
Evgrafov M.A, 1979, ASIMPTOTICHESKIE OTS
[3]   SPECTRAL THEORY OF 2-POINT DIFFERENTIAL-OPERATORS DETERMINED BY -D2 .2. ANALYSIS OF CASES [J].
LANG, P ;
LOCKER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 146 (01) :148-191
[4]  
LAVRENTEV MA, 1973, METODY TEORII FUNKTS
[5]  
MAKIN AS, 2007, INT C AN SING MOSC R, P161
[6]  
Nikolskii S. M., 1977, PRIBLIZHENIE FUNKTSI
[7]  
Sansuc JJ., 1997, New Results Oper. Theory Appl, V98, P216, DOI [10.1007/978-3-0348-8910-0_16, DOI 10.1007/978-3-0348-8910-0_16]
[8]  
[No title captured]