Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight

被引:160
作者
Genz, A
Keister, BD
机构
[1] WASHINGTON STATE UNIV,DEPT MATH,PULLMAN,WA 99164
[2] CARNEGIE MELLON UNIV,DEPT PHYS,PITTSBURGH,PA 15213
基金
美国国家科学基金会;
关键词
multiple integrals; infinite regions; Gaussian weight; Kronrod-Patterson rules;
D O I
10.1016/0377-0427(95)00232-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over infinite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one-dimensional three-point Gauss-Hermite rule. The new rules are shown to be efficient and only moderately unstable.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 16 条
[11]   NONEXISTENCE OF EXTENDED GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE RULES WITH POSITIVE WEIGHTS [J].
KAHANER, DK ;
MONEGATO, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (06) :983-986
[12]  
KRONRODAS, 1965, NODES WEIGHTS QUADRA
[13]   CONSTRUCTION OF FULLY SYMMETRIC NUMERICAL INTEGRATION FORMULAS [J].
MCNAMEE, J ;
STENGER, F .
NUMERISCHE MATHEMATIK, 1967, 10 (04) :327-&
[14]  
OFFENHARTZ POD, 1970, ATOMIC MOL ORBITAL T
[15]   OPTIMUN ADDITION OF POINTS TO QUADRATURE FORMULAE [J].
PATTERSON, TN .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :847-+
[16]  
Stroud AH., 1971, Approximate Calculation of Multiple Integrals