HALF-SPACES WITH INFLUENTIAL VARIABLE

被引:2
作者
Dzindzalieta, D. [1 ]
Goetze, F. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, LT-01513 Vilnius, Lithuania
[2] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
关键词
Boolean functions; small ball inequalities; linear threshold functions; Boolean cube; influence; SMALLEST SINGULAR-VALUE;
D O I
10.1137/S0040585X97T989866
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Boolean functions f defined on Boolean cube {-1, 1}(n) of half-spaces, i.e., functions of the form f (x) = sign(omega.x-theta). Half-space functions are often called linear threshold functions. We assume that the Boolean cube {-1,1}(n) is equipped with a uniform measure. We also assume that parallel to omega parallel to(2 )<= 1 and parallel to omega parallel to(infinity) = delta for some delta > 0. Let 0 <= epsilon <= 1 be such that vertical bar Ef vertical bar <= 1 - epsilon. We prove that there exists a constant C > 0 such that max,(Inf(i),f) >= C delta epsilon, where Inf(i) f denotes the influence of the ith coordinate of the function f. This establishes the lower bound obtained earlier by Matulef et al. [SIAM J. Comput., 39 (2010), pp. 2004-2047]. We also show that the optimal constant in this inequality exceeds 3-root 2/64 approximate to 0.066. As an auxiliary result we prove a lower bound for small ball inequalities of linear combinations of Rademacher random variables.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 27 条
[1]  
Ben-Or M., 1989, Adv. Comput. Res., V5, P91
[2]   Robust solutions of uncertain quadratic and conic-quadratic problems [J].
Ben-Tal, A ;
Nemirovski, A ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :535-560
[3]   A tight Gaussian bound for weighted sums of Rademacher random variables [J].
Bentkus, Vidmantas Kastytis ;
Dzindzalieta, Dainius .
BERNOULLI, 2015, 21 (02) :1231-1237
[4]   PERCEPTRON - A MODEL FOR BRAIN FUNCTIONING .1. [J].
BLOCK, HD .
REVIEWS OF MODERN PHYSICS, 1962, 34 (01) :123-&
[5]  
Cristianini N, 2000, INTRO SUPPORT VECTOR
[6]   A note on random signs [J].
Dzindzalieta, Dainius .
LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (04) :403-408
[7]  
Fiat A, 2004, LECT NOTES ARTIF INT, V3244, P156
[8]  
Friedland O, 2011, MATH ANN, V350, P953, DOI 10.1007/s00208-010-0581-8
[9]   Property testing and its connection to learning and approximation [J].
Goldreich, O ;
Goldwasser, S ;
Ron, D .
JOURNAL OF THE ACM, 1998, 45 (04) :653-750
[10]   ANY ANSWERS ANENT THESE ANALYTICAL ENIGMAS [J].
GUY, RK .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (04) :279-281