Convergence of adaptive BEM for some mixed boundary value problem

被引:10
作者
Aurada, M. [1 ]
Ferraz-Leite, S. [1 ]
Goldenits, P. [1 ]
Karkulik, M. [1 ]
Mayr, M. [1 ]
Praetorius, D. [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Boundary element method; Local mesh-refinement; Adaptive algorithm; Convergence; AVERAGING TECHNIQUES; INTEGRAL-EQUATION; 2-LEVEL METHODS;
D O I
10.1016/j.apnum.2011.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a boundary integral formulation of the 2D Laplace equation with mixed boundary conditions, we consider an adaptive Galerkin BEM based on an (h - h/2)-type error estimator. We include the resolution of the Dirichlet, Neumann. and volume data into the adaptive algorithm. In particular, an implementation of the developed algorithm has only to deal with discrete integral operators. We prove that the proposed adaptive scheme leads to a sequence of discrete solutions, for which the corresponding error estimators tend to zero. Under a saturation assumption for the non-perturbed problem which is observed empirically, the sequence of discrete solutions thus converges to the exact solution in the energy norm. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 36 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[3]  
Aurada M., 2009, 272009 ASC VIENN U T
[4]  
Aurada M, 2009, 402009 ASC VIENN U T
[5]  
Bank R. E., 1996, Acta Numerica, V5, P1, DOI 10.1017/S0962492900002610
[6]  
Bebendorf M, 2003, Z ANAL ANWEND, V22, P751
[7]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[8]   Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind [J].
Carstensen, C ;
Praetorius, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) :1226-1260
[9]  
Carstensen C, 2009, 152009 ASC VIENN U T
[10]  
Carstensen C., 2007, LECT NOTES APPL COMP, V29, P29