THE RATE OF CONVERGENCE OF NESTEROV'S ACCELERATED FORWARD-BACKWARD METHOD IS ACTUALLY FASTER THAN 1/k2

被引:215
作者
Attouch, Hedy [1 ]
Peypouquet, Juan [2 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, CNRS, Pl Eugene Bataillon, F-34095 Montpellier 5, France
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
关键词
convex optimization; fast convergent methods; Nesterov method; INERTIAL PROXIMAL METHOD; LINEAR INVERSE PROBLEMS; MONOTONE-OPERATORS; THRESHOLDING ALGORITHM; HILBERT-SPACE; SUM;
D O I
10.1137/15M1046095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The forward-backward algorithm is a powerful tool for solving optimization problems with an additively separable and smooth plus nonsmooth structure. In the convex setting, a simple but ingenious acceleration scheme developed by Nesterov improves the theoretical rate of convergence for the function values from the standard O(k(-1)) down to O(k(-2)). In this short paper, we prove that the rate of convergence of a slight variant of Nesterov's accelerated forward-backward method, which produces convergent sequences, is actually o(k(-2)), rather than O(k(-2)). Our arguments rely on the connection between this algorithm and a second-order differential inclusion with vanishing damping.
引用
收藏
页码:1824 / 1834
页数:11
相关论文
共 26 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]  
[Anonymous], 2015, Journal of Computational Mathematics
[3]  
[Anonymous], 2015, SpringerBriefs in Optimization
[4]  
[Anonymous], FDN TRENDS OPTIM, DOI DOI 10.1561/2400000003
[5]  
Attouch H., MATH PROGRA IN PRESS, DOI [10.1007/s10107-016-0992-8, DOI 10.1007/S10107-016-0992-8]
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[8]  
Chambolle A., PREPRINT
[9]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[10]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457