Simulating Tissues with 3D-Printed and Castable Materials

被引:13
|
作者
O'Reilly, Michael [1 ]
Hoff, Michael [1 ]
Friedman, Seth D. [2 ]
Jones, James F. X. [3 ]
Cross, Nathan M. [1 ]
机构
[1] Univ Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
[2] Seattle Childrens Hosp, 4800 Sand Point Way NE, Seattle, WA USA
[3] Univ Coll Dublin, Sch Med, Dublin, Ireland
关键词
3D printing; Phantom; CT number; Hounsfield units; Medical simulation; Casting; 3D PRINTED MATERIALS; COMPUTED-TOMOGRAPHY; PHANTOM; CT; CREATE; MODEL; SOFT;
D O I
10.1007/s10278-020-00358-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Manufacturing technologies continue to be developed and utilized in medical prototyping, simulations, and imaging phantom production. For radiologic image-guided simulation and instruction, models should ideally have similar imaging characteristics and physical properties to the tissues they replicate. Due to the proliferation of different printing technologies and materials, there is a diverse and broad range of approaches and materials to consider before embarking on a project. Although many printed materials' biomechanical parameters have been reported, no manufacturer includes medical imaging properties that are essential for realistic phantom production. We hypothesize that there are now ample materials available to create high-fidelity imaging anthropomorphic phantoms using 3D printing and casting of common commercially available materials. A material database of radiological, physical, manufacturing, and economic properties for 29 castable and 68 printable materials was generated from samples fabricated by the authors or obtained from the manufacturer and scanned with CT at multiple tube voltages. This is the largest study assessing multiple different parameters associated with 3D printing to date. These data are being made freely available on GitHub, thus affording medical simulation experts access to a database of relevant imaging characteristics of common printable and castable materials. Full data available at:.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条
  • [21] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V. P.
    Nair, Prabha D.
    BIOMEDICAL MATERIALS, 2021, 16 (05)
  • [22] 3D-Printed Satellite Brackets: Materials, Manufacturing and Applications
    Samal, Saswat Kumar
    Vishwanatha, H. M.
    Saxena, Kuldeep K.
    Behera, Asit
    Tuan Anh Nguyen
    Behera, Ajit
    Prakash, Chander
    Dixit, Saurav
    Mohammed, Kahtan A.
    CRYSTALS, 2022, 12 (08)
  • [23] Engineering of Removing Sacrificial Materials in 3D-Printed Microfluidics
    Yin, Pengju
    Hu, Bo
    Yi, Langlang
    Xiao, Chun
    Cao, Xu
    Zhao, Lei
    Shi, Hongyan
    MICROMACHINES, 2018, 9 (07):
  • [24] Current materials for 3D-printed flexible medical electrodes
    Huang, Yiting
    Zhu, Qi
    Liu, Haofan
    Ren, Ya
    Zhang, Li
    Gou, Maling
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2023, 2 (04):
  • [25] Novel 3D-Printed Biocarriers from Aluminosilicate Materials
    Economou, Eleni Anna
    Koltsakidis, Savvas
    Dalla, Ioanna
    Tsongas, Konstantinos
    Romanos, George Em.
    Tzetzis, Dimitrios
    Falaras, Polycarpos
    Theodorakopoulos, George
    Middelkoop, Vesna
    Sfetsas, Themistoklis
    MATERIALS, 2023, 16 (13)
  • [26] Dielectric and viscoelastic properties of 3D-printed biobased materials
    Lecoublet, Morgan
    Ragoubi, Mohamed
    Leblanc, Nathalie
    Koubaa, Ahmed
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 212
  • [27] Mechanical Properties of 3D-Printed Occlusal Splint Materials
    Prpic, Vladimir
    Spehar, Filipa
    Stajdohar, Dominik
    Bjelica, Roko
    Cimic, Samir
    Par, Matej
    DENTISTRY JOURNAL, 2023, 11 (08)
  • [28] A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium
    Shrestha, Jesus
    Ryan, Sean Thomas
    Mills, Oliver
    Zhand, Sareh
    Razavi Bazaz, Sajad
    Hansbro, Philip Michael
    Ghadiri, Maliheh
    Ebrahimi Warkiani, Majid
    BIOFABRICATION, 2021, 13 (03)
  • [29] 3D-Printed Silicone Materials with Hydrogen Getter Capability
    Ortiz-Acosta, Denisse
    Moore, Tanya
    Safarik, Douglas J.
    Hubbard, Kevin M.
    Janicke, Michael
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
  • [30] 3D-Printed Anisotropic Polymer Materials for Functional Applications
    Chen, Jiayao
    Liu, Xiaojiang
    Tian, Yujia
    Zhu, Wei
    Yan, Chunze
    Shi, Yusheng
    Kong, Ling Bing
    Qi, Hang Jerry
    Zhou, Kun
    ADVANCED MATERIALS, 2022, 34 (05)