Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy

被引:29
作者
Masoudifar, Reyhane [1 ]
Pouyanfar, Niki [1 ]
Liu, Dongfei [2 ]
Ahmadi, Mahnaz [1 ]
Landi, Behnaz [1 ]
Akbari, Mahsa [3 ]
Moayeri-Jolandan, Sina [1 ]
Ghorbani-Bidkorpeh, Fatemeh [1 ]
Asadian, Elham [4 ,5 ]
Shahbazi, Mohammad-Ali [6 ,7 ,8 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Pharm, Dept Pharmaceut & Pharmaceut Nanotechnol, Tehran, Iran
[2] China Pharmaceut Univ, Dept Pharmaceut Sci, State Key Lab Nat Med, NMPA Key Lab Res & Evaluat Pharmaceut Preparat &, Nanjing 210009, Peoples R China
[3] Zanjan Univ Med Sci, Sch Pharm, Dept Pharmaceut Nanotechnol, Zanjan 4513956184, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Adv Technol Med, Dept Tissue Engn & Appl Cell Sci, POB 1968917313, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Med Nanotechnol & Tissue Engn Res Ctr, POB 19689-17313, Tehran, Iran
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[7] Univ Groningen, Univ Med Ctr Groningen, WJ Kolff Inst Biomed Engn & Mat Sci, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[8] Zanjan Univ Med Sci, Sch Pharm, Dept Pharmaceut Biomat, Zanjan 4513956184, Iran
关键词
Metal-organic framework; Active targeting; Surface functionalization; Cell-surface receptor; Cancer therapy; DRUG-DELIVERY; ANTICANCER DRUG; NANOPARTICLES; EFFICIENT; TUMOR; PH; SYSTEM; NANOCOMPOSITES; NANOPLATFORM; APTAMERS;
D O I
10.1016/j.apmt.2022.101646
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The precision tenability of metal-organic frameworks (MOFs) enables the efficient encapsulation of a wide va-riety of small-molecule pharmaceuticals and macromolecular cargos, such as nucleic acids and proteins. MOFs, assembling of organic ligands and metal ions/metal clusters via coordinative bonds, offer advanced features in medicine and drug delivery due to their ultrahigh porosity, diverse functional groups, and versatile structures. After surface modification with active targeting moieties, MOFs can specifically transfer a high amount of payload to the site of action due to the high internal surface area. This review summarizes the unique properties of MOFs and their advantages as nanocarriers for drug targeting to treat different diseases. At first, we reviewed the structures of MOFs, and the corresponding synthesis approaches and characterization techniques. Then, the state-of-the-art strategies to functionalize MOFs with targeting moieties are discussed. Regarding the most recent active targeting delivery applications of MOFs, critical issues to fabricate an efficient carrier that can bind to overexpressed cell-surface receptors are discussed. Moreover, MOF-based nanocarriers are categorized based on the ligands (i.e., proteins, peptides, aptamers, small molecules, and polysaccharides) used to deliver therapeutic agents through active targeting. Finally, challenges and prospects are highlighted to provide context for future usage of MOFs as efficient drug delivery systems.
引用
收藏
页数:30
相关论文
共 205 条
  • [1] Hyaluronic Acid: Redefining Its Role
    Abatangelo, G.
    Vindigni, V.
    Avruscio, G.
    Pandis, L.
    Brun, P.
    [J]. CELLS, 2020, 9 (07) : 1 - 19
  • [2] A Luminescent Amine-Functionalized Metal-Organic Framework Conjugated with Folic Acid as a Targeted Biocompatible pH-Responsive Nanocarrier for Apoptosis Induction in Breast Cancer Cells
    Abazari, Reza
    Ataei, Farangis
    Morsali, Ali
    Slawin, Alexandra M. Z.
    Carpenter-Warren, Cameron L.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (49) : 45442 - 45454
  • [3] Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks
    Abdelhamid, Hani Nasser
    Dowaidar, Moataz
    Hallbrink, Mattias
    Langel, Ulo
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 300
  • [4] pH and ultrasound dual-responsive drug delivery system based on PEG-folate-functionalized Iron-based metal-organic framework for targeted doxorubicin delivery
    Ahmed, Ahmed
    Karami, Abdollah
    Sabouni, Rana
    Husseini, Ghaleb A.
    Paul, Vinod
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 626
  • [5] Targeted anticancer therapy: Overexpressed receptors and nanotechnology
    Akhtar, Mohd Javed
    Ahamed, Maqusood
    Alhadlaq, Hisham A.
    Alrokayan, Salman A.
    Kumar, Sudhir
    [J]. CLINICA CHIMICA ACTA, 2014, 436 : 78 - 92
  • [6] Photodynamic Therapy: A Compendium of Latest Reviews
    Algorri, Jose Francisco
    Ochoa, Mario
    Roldan-Varona, Pablo
    Rodriguez-Cobo, Luis
    Lopez-Higuera, Jose Miguel
    [J]. CANCERS, 2021, 13 (17)
  • [7] Metal-organic framework-based nanocomposites for sensing applications - A review
    Amini, Ali
    Kazemi, Sima
    Safarifard, Vahid
    [J]. POLYHEDRON, 2020, 177
  • [8] An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites
    Attia, Mohamed F.
    Anton, Nicolas
    Wallyn, Justine
    Omran, Ziad
    Vandamme, Thierry F.
    [J]. JOURNAL OF PHARMACY AND PHARMACOLOGY, 2019, 71 (08) : 1185 - 1198
  • [9] Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic
    Au, Kin Man
    Satterlee, Andrew
    Min, Yuanzeng
    Tian, Xi
    Kim, Young Seok
    Caster, Joseph M.
    Zhang, Longzhen
    Zhang, Tian
    Huang, Leaf
    Wang, Andrew Z.
    [J]. BIOMATERIALS, 2016, 82 : 178 - 193
  • [10] Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review
    Behera, Anindita
    Padhi, Santwana
    [J]. ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (05) : 1557 - 1567