Wave breaking for nonlinear nonlocal shallow water equations

被引:1279
作者
Constantin, A
Escher, J
机构
[1] Univ Zurich, Dept Math, CH-8057 Zurich, Switzerland
[2] Univ Kassel, Fachbereich 17, D-34132 Kassel, Germany
关键词
D O I
10.1007/BF02392586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:229 / 243
页数:15
相关论文
共 36 条
[1]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[2]  
Alinhac S., 1995, PROGR NONLINEAR DIFF, V17
[3]  
ALINHAC S, 1995, PARTIAL DIFFERENTIAL
[4]  
ALINHAC S, 1996, PROGR NONLINEAR DIFF, V21
[5]   Peakons and coshoidal waves: Traveling wave solutions of the Camassa-Holm equation [J].
Boyd, JP .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 81 (2-3) :173-187
[6]   DIFFERENTIABILITY OF THE BLOW-UP CURVE FOR ONE DIMENSIONAL NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 91 (01) :83-98
[7]   A completely integrable Hamiltonian system [J].
Calogero, F ;
Francoise, JP .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (06) :2863-2871
[8]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[9]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[10]  
Constantin A., 1998, ANN SC NORM SUPER PI, V26, P303