Finding 2-edge connected spanning subgraphs

被引:5
作者
Huh, WT [1 ]
机构
[1] Columbia Univ, Ind Engn & Operat Res Dept, New York, NY 10027 USA
关键词
graph; 2-edge connectivity; approximation algorithm; linear programming;
D O I
10.1016/j.orl.2003.08.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the NP-hard problem of finding a minimum size 2-edge connected spanning subgraph (2-ECSS). An algorithm is given that on an r-edge connected input graph G=(V, E) finds a 2-ECSS of size at most \V\ +(\E\ - \V\)/(r- 1). For r-regular, r-edge connected input graphs for r = 3, 4, 5 and 6, this gives approximation guarantees of 5/4, 4/3, 11/8 and 7/5, respectively. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 1979, GRAPH THEORY INTRO C, DOI DOI 10.1007/978-1-4612-9967-7
[2]  
Cheriyan J, 1998, LECT NOTES COMPUT SC, V1412, P126
[3]  
GARG N, 1993, PROCEEDINGS OF THE FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P103
[4]   BICONNECTIVITY APPROXIMATIONS AND GRAPH CARVINGS [J].
KHULLER, S ;
VISHKIN, U .
JOURNAL OF THE ACM, 1994, 41 (02) :214-235
[5]  
KRYSTA P, 2001, P 18 INT S THEOR ASP
[6]  
VEMPALA S, 2000, P 3 WORKSH APPR SAAR
[7]   Non-separable and planar graphs [J].
Whitney, Hassler .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) :339-362