Computation of periodic orbits in three-dimensional Lotka-Volterra systems

被引:2
作者
Navarro, Juan F. [1 ]
Poveda, Ruben [1 ]
机构
[1] Univ Alicante, Dept Appl Math, Carretera San Vicente Raspeig S-N, Alicante 03690, Spain
关键词
Lotka-Volterra; periodic orbits; Poincare-Lindstedt method; symbolic computation; LINDSTEDT-POINCARE TECHNIQUE;
D O I
10.1002/mma.4522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an adaptation of the Poincare-Lindstedt method for the determination of periodic orbits in three-dimensional nonlinear differential systems. We describe here a general symbolic algorithm to implement the method and apply it to compute periodic solutions in a three-dimensional Lotka-Volterra system modeling a chain food interaction. The sufficient conditions to make secular terms disappear from the approximate series solution are given in the paper.
引用
收藏
页码:7185 / 7200
页数:16
相关论文
共 17 条
[1]   Lindstedt Poincare technique applied to molecular potentials [J].
Bhattacharjee, Shayak ;
Bhattacharjee, J. K. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (06) :1398-1410
[2]   The periodic solution of van der Pol's equation [J].
Buonomo, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (01) :156-171
[3]  
Chauvet E., 2002, Mathematics magazine, V75, P243, DOI [DOI 10.1080/0025570X.2002.11953139, 10.1080/0025570X.2002.11953139]
[4]   An elliptic Lindstedt-Poincare method for certain strongly non-linear oscillators [J].
Chen, SH ;
Cheung, YK .
NONLINEAR DYNAMICS, 1997, 12 (03) :199-213
[5]   High-Precision Continuation of Periodic Orbits [J].
Dena, Angeles ;
Rodriguez, Marcos ;
Serrano, Sergio ;
Barrio, Roberto .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[6]   Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a constant [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (02) :309-314
[7]  
He JH, 2002, J NONLINEAR MECH
[8]   Comparison of two Lindstedt-Poincare-type perturbation methods [J].
Hu, H ;
Xiong, ZG .
JOURNAL OF SOUND AND VIBRATION, 2004, 278 (1-2) :437-444
[9]  
Lotka A.J., 1956, Elements of mathematical biology"
[10]  
Navarro JF, 2016, METHODES NOUVELLES M, VI