Stresses imposed on the cyanobacterium Synechocystis sp. PCC 6803 by various compounds present during silica sol-gel encapsulation, including salt, ethanol (EtOH), polyethylene glycol (PEG), glycerol, and glycine betaine, were investigated. Viability of encapsulated cells and photosynthetic activity of cells stressed by immediate (2 min) and 24-h exposure to the five stress-inducing compounds were monitored by pulse amplitude modulated fluorometry. Cells of Synechocystis sp. PCC 6803 readily survive encapsulation in both alkoxide-derived gels and gels from aqueous precursors and can remain active at least 8 weeks with slight degradation in PSII efficiency. Post-encapsulation survival was improved in gels containing no additive when compared with gels containing PEG or glycerol. Glycerol was shown to have a detrimental effect on Synechocystis sp. PCC 6803, reducing I center dot PSII and F (v)'/F (m)' by as much as 75%, possibly a result of disrupting excitation transfer between the phycobilisomes and photosystems. PEG was similarly deleterious, dramatically reducing the ability to carry out a state transition and adequately manage excitation energy distribution. EtOH stress also hindered state transitions, although less severely than PEG, and the cells were able to recover nearly all photosynthetic efficiency within 24 h after an initial drop. Betaine did not interfere with state transitions but did reduce quantum yield and photochemical quenching. Finally, Synechocystis sp. PCC 6803 was shown to recover from salt stress.