Error Compensation Enhanced Day-Ahead Electricity Price Forecasting

被引:16
|
作者
Kontogiannis, Dimitrios [1 ]
Bargiotas, Dimitrios [1 ]
Daskalopulu, Aspassia [1 ]
Arvanitidis, Athanasios Ioannis [1 ]
Tsoukalas, Lefteri H. [2 ]
机构
[1] Univ Thessaly, Sch Engn, Dept Elect & Comp Engn, Volos 38334, Greece
[2] Purdue Univ, Ctr Intelligent Energy Syst CiENS, Sch Nucl Engn, W Lafayette, IN 47906 USA
关键词
electricity price forecasting; energy; machine learning; deep learning; neural networks; artificial intelligence; error estimation; COMPUTATIONAL INTELLIGENCE; MODEL; REGRESSION;
D O I
10.3390/en15041466
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The evolution of electricity markets has led to increasingly complex energy trading dynamics and the integration of renewable energy sources as well as the influence of several external market factors contributed towards price volatility. Therefore, day-ahead electricity price forecasting models, typically using some kind of neural network, play a crucial role in the optimal behavior of market agents. The most prominent models and benchmarks rely on improving the accuracy of predictions and the time for convergence by some sort of a priori processing of the dataset that is used for the training of the neural network, such as hyperparameter tuning and feature selection techniques. What has been overlooked so far is the possible benefit of a posteriori processing, which would consider the effects of parameters that could refine the predictions once they have been made. Such a parameter is the estimation of the residual training error. In this study, we investigate the effect of residual training error estimation for the day-ahead price forecasting task and propose an error compensation deep neural network model (ERC-DNN) that focuses on the minimization of prediction error, while reinforcing error stability through the integration of an autoregression module. The experiments on the Nord Pool power market indicated that this approach yields improved error metrics when compared to the baseline deep learning structure in different training scenarios, and the refined predictions for each hourly sequence shared a more stable error profile. The proposed method contributes towards the development of more flexible hybrid neural network models and the potential integration of the error estimation module in future benchmarks, given a small and interpretable set of hyperparameters.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] An ensemble approach for enhanced Day-Ahead price forecasting in electricity markets
    Kitsatoglou, Alkiviadis
    Georgopoulos, Giannis
    Papadopoulos, Panagiotis
    Antonopoulos, Herodotus
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [2] Forecasting day-ahead price spikes for the Ontario electricity market
    Sandhu, Harmanjot Singh
    Fang, Liping
    Guan, Ling
    ELECTRIC POWER SYSTEMS RESEARCH, 2016, 141 : 450 - 459
  • [3] A soft computing system for day-ahead electricity price forecasting
    Niu, Dongxiao
    Liu, Da
    Wu, Desheng Dash
    APPLIED SOFT COMPUTING, 2010, 10 (03) : 868 - 875
  • [4] Day-ahead electricity price forecasting by a new hybrid method
    Zhang, Jinliang
    Tan, Zhongfu
    Yang, Shuxia
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 695 - 701
  • [5] Day-Ahead Price Forecasting for the Spanish Electricity Market
    Romero, Alvaro
    Ramon Dorronsoro, Jose
    Diaz, Julia
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (04): : 42 - 50
  • [6] Deep learning for day-ahead electricity price forecasting
    Zhang, Chi
    Li, Ran
    Shi, Heng
    Li, Furong
    IET SMART GRID, 2020, 3 (04) : 462 - 469
  • [7] Day-ahead electricity price forecasting in a grid environment
    Li, Guang
    Liu, Chen-Ching
    Mattson, Chris
    Lawarree, Jacques
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (01) : 266 - 274
  • [8] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [9] The Day-Ahead Electricity Price Forecasting Based on Stacked CNN and LSTM
    Xie, Xiaolong
    Xu, Wei
    Tan, Hongzhi
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 216 - 230
  • [10] Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting
    Uniejewski, Bartosz
    Nowotarski, Jakub
    Weron, Rafal
    ENERGIES, 2016, 9 (08)