Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries

被引:58
|
作者
Chen, Hedong [1 ]
Shen, Kaixiang [1 ]
Hou, Xianhua [1 ]
Zhang, Guangzu [6 ]
Wang, Shaofeng [1 ]
Chen, Fuming [1 ]
Fu, Lijun [4 ,5 ]
Qin, Haiqing [7 ]
Xia, Yingchun [8 ]
Zhou, Guofu [2 ,3 ,9 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Engn Technol Res Ctr Efficient Green En, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Inst Elect Paper Displays, Guangzhou 510006, Guangdong, Peoples R China
[4] Nanjing Tech Univ, Key Lab Flexible Elect KLOFE, Natl Jiangsu Synergist Innovat Ctr Adv Mat, Nanjing 211816, Jiangsu, Peoples R China
[5] Nanjing Tech Univ, IAM, Natl Jiangsu Synergist Innovat Ctr Adv Mat, Nanjing 211816, Jiangsu, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[7] China Nonferrous Met Guilin Geol & Min Co Ltd, Guangxi Key Lab Superhard Mat, Guilin 541004, Peoples R China
[8] Beijing JWGB Sci & Tech Co Ltd, Beijing 100055, Peoples R China
[9] Shenzhen Guohua Optoelect Tech Co Ltd, Shenzhen 518110, Peoples R China
基金
中国国家自然科学基金;
关键词
Hollow ring-like carbon matrix; Nano-Si; Carbon layer; Hierarchical protective function; Lithium ion batteries; ONE-STEP SYNTHESIS; GRAPHENE OXIDE; NANO-SILICON; NANOCOMPOSITE ANODES; SANDWICH STRUCTURE; NANOWIRES; COMPOSITE; NANOPARTICLES; MICROSPHERES; STORAGE;
D O I
10.1016/j.apsusc.2018.11.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si-based anode with hierarchical protective function and hollow ring-like carbon matrix has been successfully designed and prepared by a simple one-step spray drying method. Nano-Si particles are coated by carbon layer and then encapsulated in a strong carbon matrix with hollow ring-like structure composed of carbon nanotubes and wrinkled graphene sheets. The Si-based anode, nano-Si@carbon/carbon nanotubes@graphene sheets, exhibits excellent electrochemical performance including high initial coloumbic efficiency, favorable cyclic stability and outstanding rate capability. The composite delivers an initial discharge/charge capacity of 2891.7/2533.3 mAh g(-1) with a high initial coloumbic efficiency of 87.6%, high capacity of 1524.3 mAh g(-1) after 130 cycles with high capacity retention of 92.4% (vs. 1618.4 mAh g(-1) for the 100 cycles), and high capacity maintaining at 1073.2/1016.2 mAh g(-1) at a large current density of 1.6 A g(-1). Furthermore, the scanning electron microscopy and transmission electron microscopy images of the composite electrode after several operating cycles also indicate that composite electrode exhibits structural stability and nano-Si particles are still wrapped by the carbon matrix material. Therefore, the composite is very promising anode for lithium ion batteries.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 50 条
  • [21] Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries
    Kim, JH
    Kim, H
    Sohn, HJ
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) : 557 - 561
  • [22] Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries
    Liu, Ruiping
    Shen, Chao
    Dong, Yue
    Qin, Jinlei
    Wang, Qi
    Iocozzia, James
    Zhao, Shiqiang
    Yuan, Kunjie
    Han, Cuiping
    Li, Baohua
    Lin, Zhiqun
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14797 - 14804
  • [23] Hierarchical void structured Si/PANi/C hybrid anode material for high-performance lithium-ion batteries
    Mu, Ge
    Ding, Zepeng
    Mu, Daobin
    Wu, Borong
    Bi, Jiaying
    Zhang, Ling
    Yang, Hao
    Wu, Hanfeng
    Wu, Feng
    ELECTROCHIMICA ACTA, 2019, 300 : 341 - 348
  • [24] Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries
    Zang, Jun
    Ye, Jianchuan
    Qian, Hang
    Lin, Yu
    Zhang, Xiangwu
    Zheng, Mingsen
    Dong, Quanfeng
    ELECTROCHIMICA ACTA, 2018, 260 : 783 - 788
  • [25] In situ dispensing glue to prepare flexible Si-based anode for lithium-ion batteries
    Zhang, Meng
    Wang, Zhenqiu
    Li, Jin
    Gou, Ningnian
    Zhang, Dianping
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (12) : 2723 - 2731
  • [26] Hollow carbon sphere based WS2 anode for high performance lithium and sodium ion batteries
    Liu, Wenlong
    Wei, Meng
    Ji, Lili
    Zhang, Yunfeng
    Song, Yaochen
    Liao, Jiaxuan
    Zhang, Lingzhao
    CHEMICAL PHYSICS LETTERS, 2020, 741
  • [27] Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries
    Zeng, Guilin
    Zhou, Wei
    Zheng, Jialing
    Fan, Zhanhua
    Chen, Han
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (08) : 4899 - 4906
  • [28] Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries
    Xiao, Wei
    Qiu, Yinjie
    Xu, Quan
    Wang, Jingjing
    Xie, Chong
    Peng, Jianhong
    Hu, Junhua
    Zhang, Jiujun
    Li, Xifei
    ELECTROCHIMICA ACTA, 2020, 364
  • [29] Electron-rich hybrid matrix to enhance molybdenum oxide-based anode performance for Lithium-Ion batteries
    Ko, Jaewook
    Kim, Minju
    So, Seongjoon
    Kim, Il Tae
    Hur, Jaehyun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 647 : 93 - 103
  • [30] Hollow cobalt oxide nanoparticles embedded porous reduced graphene oxide anode for high performance lithium ion batteries
    Wu, Diben
    Ouyang, Yirui
    Zhang, Wenlin
    Chen, Zhuan
    Li, Zhi
    Wang, Shuo
    Wang, Fengqian
    Li, Hongliang
    Zhang, Lian Ying
    APPLIED SURFACE SCIENCE, 2020, 508