First-order methods for sparse covariance selection

被引:196
作者
D'Aspremont, Alexandre [1 ]
Banerjee, Onureena [2 ]
El Ghaoui, Laurent [2 ]
机构
[1] Princeton Univ, ORFE Dept, Princeton, NJ 08544 USA
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
covariance selection; semidefinite programming; coordinate descent;
D O I
10.1137/060670985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 19 条
[11]  
Fazel M, 2001, P AMER CONTR CONF, P4734, DOI 10.1109/ACC.2001.945730
[12]   Covariance matrix selection and estimation via penalised normal likelihood [J].
Huang, JZ ;
Liu, NP ;
Pourahmadi, M ;
Liu, LX .
BIOMETRIKA, 2006, 93 (01) :85-98
[13]   Experiments in stochastic computation for high-dimensional graphical models [J].
Jones, B ;
Carvalho, C ;
Dobra, A ;
Hans, C ;
Carter, C ;
West, M .
STATISTICAL SCIENCE, 2005, 20 (04) :388-400
[14]   Practical aspects of the Moreau-Yosida regularization: Theoretical preliminaries [J].
Lemarechal, C ;
Sagastizabal, C .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :367-385
[15]   ON THE CONVERGENCE OF THE COORDINATE DESCENT METHOD FOR CONVEX DIFFERENTIABLE MINIMIZATION [J].
LUO, ZQ ;
TSENG, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 72 (01) :7-35
[16]   Smooth minimization of non-smooth functions [J].
Nesterov, Y .
MATHEMATICAL PROGRAMMING, 2005, 103 (01) :127-152
[17]  
NESTEROV Y, 2003, INTROD LECT CONVEX O
[18]  
Nesterov Yu. E., 1983, Doklady Akademii Nauk SSSR, V269, P543