First-order methods for sparse covariance selection

被引:196
作者
D'Aspremont, Alexandre [1 ]
Banerjee, Onureena [2 ]
El Ghaoui, Laurent [2 ]
机构
[1] Princeton Univ, ORFE Dept, Princeton, NJ 08544 USA
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
covariance selection; semidefinite programming; coordinate descent;
D O I
10.1137/060670985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 19 条
[1]  
AKAIKE J, 1973, 2 INT S INF THEOR AK, P267
[2]  
Bilmes JA, 2000, INT CONF ACOUST SPEE, P1009
[3]  
BILMES JA, 1999, THESIS UC BERKELEY B
[4]  
Boyd S., 2004, Convex Optimization, DOI [10.1017/CBO9780511804441, DOI 10.1017/CBO9780511804441]
[5]   Multimodel inference - understanding AIC and BIC in model selection [J].
Burnham, KP ;
Anderson, DR .
SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) :261-304
[6]  
Dahl J., 2005, MAXIMUM LIKELIHOOD E
[7]   COVARIANCE SELECTION [J].
DEMPSTER, AP .
BIOMETRICS, 1972, 28 (01) :157-&
[8]   Sparse graphical models for exploring gene expression data [J].
Dobra, A ;
Hans, C ;
Jones, B ;
Nevins, JR ;
Yao, GA ;
West, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :196-212
[9]  
Dobra A., 2004, Bayesian Covariance Selection
[10]   Sparse nonnegative solution of underdetermined linear equations by linear programming [J].
Donoho, DL ;
Tanner, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9446-9451