Uniform estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations with degenerate diffusion

被引:8
|
作者
Wang, Kaixin [2 ]
Wang, Hong [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
characteristic methods; convergence analysis; degenerate convection-diffusion equations; error estimates; Eulerian-Lagrangian methods; interpolation of spaces; FINITE-ELEMENT-METHOD; MISCIBLE DISPLACEMENT; GALERKIN METHOD; CONVERGENCE; APPROXIMATION;
D O I
10.1093/imanum/drq007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a priori error estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations with degenerate diffusion. The estimates depend only on certain Sobolev norms of the initial and right side data of the problem but not on the lower bound of the diffusion or any norms of the true solution. Thus these estimates hold uniformly with respect to the degenerate diffusion. On a general unstructured mesh, these estimates are suboptimal but sharp when the Courant number is less than unity and are optimal otherwise. We further prove an optimal-order error estimate and a superconvergence estimate for a special case of d-linear approximations on a d-dimensional rectangular domain with a uniform rectangular partition. We then use the interpolation of spaces and stability estimates to derive an estimate for problems with minimal or intermediate regularity, where the convergence rates are proportional to certain Besov norms of the initial and right side data. Numerical experiments are presented to confirm the theoretical results.
引用
收藏
页码:1006 / 1037
页数:32
相关论文
共 50 条
  • [21] The Discontinuous Galerkin Method for Convection-Diffusion Problems in Time-Dependent Domains
    Kucera, Vaclav
    Feistauer, Miloslav
    Prokopova, Jaroslava
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 551 - 559
  • [22] The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
    Cifani, Simone
    Jakobsen, Espen R.
    Karlsen, Kenneth H.
    BIT NUMERICAL MATHEMATICS, 2011, 51 (04) : 809 - 844
  • [23] ERROR ESTIMATES FOR THE AEDG METHOD TO ONE-DIMENSIONAL LINEAR CONVECTION-DIFFUSION EQUATIONS
    Liu, Hailiang
    Wen, Hairui
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 123 - 148
  • [24] Arbitrary Lagrangian-Eulerian method for coupled Navier-Stokes and convection-diffusion equations with moving boundaries
    Braescu, Liliana
    George, Thomas F.
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 31 - +
  • [25] Eulerian-Lagrangian time-stepping methods for convection-dominated problems
    El-Amrani, Mofdi
    Seaid, Mohammed
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (3-4) : 421 - 439
  • [26] Multidomain pseudospectral methods for nonlinear convection-diffusion equations
    Ji, Yuan-yuan
    Wu, Hua
    Ma, He-ping
    Guo, Ben-yu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (10) : 1255 - 1268
  • [27] General Formulation of Second-Order Semi-Lagrangian Methods for Convection-Diffusion Problems
    Long, Xiaohan
    Chen, Chuanjun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] On the convergence of basic iterative methods for convection-diffusion equations
    Bey, J
    Reusken, A
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (05) : 329 - 352
  • [29] Front tracking and operator splitting for nonlinear degenerate convection-diffusion equations
    Evje, S
    Karlsen, KH
    Lie, KA
    Risebro, NH
    PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS, 2000, 120 : 209 - 227
  • [30] Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations
    Ahmadinia, M.
    Safari, Z.
    Fouladi, S.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (03) : 533 - 554