A Convex Approach to Data-Driven Optimal Control via Perron-Frobenius and Koopman Operators

被引:11
作者
Huang, Bowen [1 ]
Vaidya, Umesh [1 ]
机构
[1] Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA
基金
美国国家科学基金会;
关键词
Optimal control; Markov processes; Heuristic algorithms; Control systems; Approximation algorithms; Stability criteria; Numerical stability; Convex optimization; data-driven control; linear operator approach; COMPUTATION; STABILITY;
D O I
10.1109/TAC.2022.3164986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We provide a convex formulation for the optimal control problem (OCP) of the nonlinear system. The convex formulation relies on the duality result in the dynamical system's stability theory involving density function and Perron-Frobenius operator. We formulate the OCP as an infinite-dimensional convex optimization program. The finite-dimensional approximation of the optimization problem relies on the recent advances made in the Koopman operator's data-driven computation, which is dual to the Perron-Frobenius operator. Simulation results are presented to demonstrate the application of the developed framework.
引用
收藏
页码:4778 / 4785
页数:8
相关论文
共 33 条
  • [1] Arbabi H, 2018, IEEE DECIS CONTR P, P6409, DOI 10.1109/CDC.2018.8619720
  • [2] Barbalat I., 1959, Rev. Math. Pures Appl, V4, P267
  • [3] LINEAR PROGRAMMING APPROACH TO DETERMINISTIC INFINITE HORIZON OPTIMAL CONTROL PROBLEMS WITH DISCOUNTING
    Gaitsgory, Vladimir
    Quincampoix, Marc
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (04) : 2480 - 2512
  • [4] Convex Computation of the Region of Attraction of Polynomial Control Systems
    Henrion, Didier
    Korda, Milan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (02) : 297 - 312
  • [5] Huang B, 2020, Lecture Notes in Control and Information Sciences, P313, DOI DOI 10.1007/978-3-030-35713-9_12
  • [6] Huang BW, 2018, IEEE DECIS CONTR P, P6434, DOI 10.1109/CDC.2018.8619727
  • [7] Huang BW, 2018, P AMER CONTR CONF, P5659, DOI 10.23919/ACC.2018.8431409
  • [8] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [9] Kappen HJ, 2007, AIP CONF PROC, V887, P149
  • [10] Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
    Klus, Stefan
    Schuster, Ingmar
    Muandet, Krikamol
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (01) : 283 - 315