Microbial electrosynthesis from CO2: forever a promise?

被引:231
作者
Prevoteau, Antonin [1 ,2 ]
Carvajal-Arroyo, Jose M. [1 ,2 ]
Ganigue, Ramon [1 ,2 ]
Rabaey, Korneel [1 ,2 ]
机构
[1] Univ Ghent, Ctr Microbial Ecol & Technol CMET, Campus Coupure,Coupure Links 653, Ghent 9000, Belgium
[2] CAPTURE, Mol, Belgium
关键词
CARBON-DIOXIDE; ESCHERICHIA-COLI; FERMENTATION; ELECTROLYSIS; PERFORMANCE; REDUCTION; HYDROGEN; REACTOR; ROUTE; WATER;
D O I
10.1016/j.copbio.2019.08.014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microbial electrosynthesis (MES) is an electrochemical process used to drive microbial metabolism for bio-production, such as the reduction of CO2 into industrially relevant organic products as an alternative to current fossil-fuel-derived commodities. After a decade of research on MES from CO2, figures of merit have increased significantly but are plateauing yet far from those expected to allow competitiveness for synthesis of commodity chemicals. Here we discuss the substantial technological shortcomings still associated with MES and evoke possible ways to mitigate them. It appears particularly challenging to obtain both relevant production rates (driven by high current densities) and energy conversion efficiency (i.e. low cell voltage) in microbial-compatible electrolytes. More competitive processes could arise by decoupling effective abiotic electroreductions (e.g. CO2 to CO or ethanol; H-2 evolution) with subsequent fermentation processes.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 75 条
[21]   Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation [J].
Ganigue, Ramon ;
Sanchez-Paredes, Patricia ;
Baneras, Lluis ;
Colprim, Jesus .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[22]  
Ge S, 2015, ENV SCI TECHNOL, V49
[23]   Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis [J].
Gildemyn, Sylvia ;
Verbeeck, Kristof ;
Slabbinck, Rik ;
Andersen, Stephen J. ;
Prevoteau, Antonin ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2015, 2 (11) :325-328
[24]   A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures [J].
Gilliam, R. J. ;
Graydon, J. W. ;
Kirk, D. W. ;
Thorpe, S. J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (03) :359-364
[25]   In Situ Water Electrolyzer Stack for an Electrobioreactor [J].
Givirovskiy, Georgy ;
Ruuskanen, Vesa ;
Ojala, Leo S. ;
Kokkonen, Petteri ;
Ahola, Jero .
ENERGIES, 2019, 12 (10)
[26]   Bioelectrochemical systems and synthetic biology: more power, more products [J].
Glaven, Sarah M. .
MICROBIAL BIOTECHNOLOGY, 2019, 12 (05) :819-823
[27]   A novel tubular microbial electrolysis cell for high rate hydrogen production [J].
Guo, Kun ;
Prevoreau, Antonin ;
Rabaey, Korneel .
JOURNAL OF POWER SOURCES, 2017, 356 :484-490
[28]   Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals [J].
Hawkins, Aaron S. ;
McTernan, Patrick M. ;
Lian, Hong ;
Kelly, Robert M. ;
Adams, Michael W. W. .
CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (03) :376-384
[29]   Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J].
He, Zhen ;
Mansfeld, Florian .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :215-219
[30]   Acetone production with metabolically engineered strains of Acetobacterium woodii [J].
Hoffmeister, Sabrina ;
Gerdom, Marzena ;
Bengelsdorf, Frank R. ;
Linder, Sonja ;
Fluechter, Sebastian ;
Oeztuerk, Hatice ;
Bluemke, Wilfried ;
May, Antje ;
Fischer, Ralf-Joerg ;
Bahl, Hubert ;
Duene, Peter .
METABOLIC ENGINEERING, 2016, 36 :37-47