Microbial electrosynthesis from CO2: forever a promise?

被引:231
作者
Prevoteau, Antonin [1 ,2 ]
Carvajal-Arroyo, Jose M. [1 ,2 ]
Ganigue, Ramon [1 ,2 ]
Rabaey, Korneel [1 ,2 ]
机构
[1] Univ Ghent, Ctr Microbial Ecol & Technol CMET, Campus Coupure,Coupure Links 653, Ghent 9000, Belgium
[2] CAPTURE, Mol, Belgium
关键词
CARBON-DIOXIDE; ESCHERICHIA-COLI; FERMENTATION; ELECTROLYSIS; PERFORMANCE; REDUCTION; HYDROGEN; REACTOR; ROUTE; WATER;
D O I
10.1016/j.copbio.2019.08.014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microbial electrosynthesis (MES) is an electrochemical process used to drive microbial metabolism for bio-production, such as the reduction of CO2 into industrially relevant organic products as an alternative to current fossil-fuel-derived commodities. After a decade of research on MES from CO2, figures of merit have increased significantly but are plateauing yet far from those expected to allow competitiveness for synthesis of commodity chemicals. Here we discuss the substantial technological shortcomings still associated with MES and evoke possible ways to mitigate them. It appears particularly challenging to obtain both relevant production rates (driven by high current densities) and energy conversion efficiency (i.e. low cell voltage) in microbial-compatible electrolytes. More competitive processes could arise by decoupling effective abiotic electroreductions (e.g. CO2 to CO or ethanol; H-2 evolution) with subsequent fermentation processes.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 75 条
[1]   Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate [J].
Anzola Rojas, Melida del Pilar ;
Zaiat, Marcelo ;
Gonzalez, Ernesto Rafael ;
De Wever, Heleen ;
Pant, Deepak .
BIORESOURCE TECHNOLOGY, 2018, 266 :203-210
[2]   Thermodynamic constraints shape the structure of carbon fixation pathways [J].
Bar-Even, Arren ;
Flamholz, Avi ;
Noor, Elad ;
Milo, Ron .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (09) :1646-1659
[3]   Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction [J].
Batlle-Vilanova, Pau ;
Ganigue, Ramon ;
Ramio-Pujol, Sara ;
Baneras, Lluis ;
Jimenez, Gerard ;
Hidalgo, Manuela ;
Dolors Balaguer, M. ;
Colprim, Jesus ;
Puig, Sebastia .
BIOELECTROCHEMISTRY, 2017, 117 :57-64
[4]   Succinic acid: A new platform chemical for biobased polymers from renewable resources [J].
Bechthold, Inna ;
Bretz, Karlheinz ;
Kabasci, Stephan ;
Kopitzky, Rodion ;
Springer, Andrea .
CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (05) :647-654
[5]   Bacterial Anaerobic Synthesis Gas (Syngas) and CO2+H2 Fermentation [J].
Bengelsdorf, Frank R. ;
Beck, Matthias H. ;
Erz, Catarina ;
Hoffmeister, Sabrina ;
Karl, Michael M. ;
Riegler, Peter ;
Wirth, Steffen ;
Poehlein, Anja ;
Weuster-Botz, Dirk ;
Duerre, Peter .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 103, 2018, 103 :143-221
[6]   Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis [J].
Bengelsdorf, Frank R. ;
Poehlein, Anja ;
Linder, Sonja ;
Erz, Catarina ;
Hummel, Tim ;
Hoffmeister, Sabrina ;
Daniel, Rolf ;
Duerre, Peter .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[7]   Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria [J].
Bertsch, Johannes ;
Mueller, Volker .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[8]   Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction [J].
Blanchet, Elise ;
Duquenne, François ;
Rafrafi, Yan ;
Etcheverry, Luc ;
Erable, Benjamin ;
Bergel, Alain .
Energy and Environmental Science, 2015, 8 (12) :3731-3744
[9]   Proton transfer in microbial electrolysis cells [J].
Borol, Abhijeet P. ;
Lewis, Alex J. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (04) :725-736
[10]   A novel high-throughput method for kinetic characterisation of anaerobic bioproduction strains, applied to Clostridium kluyveri [J].
Candry, Pieter ;
Van Daele, Timothy ;
Denis, Kyrina ;
Amerlinck, Youri ;
Andersen, Stephen J. ;
Ganigue, Ramon ;
Arends, Jan B. A. ;
Nopens, Ingmar ;
Rabaey, Korneel .
SCIENTIFIC REPORTS, 2018, 8