Location of Solutions of Fredholm-Nemytskii Integral Equations from a Whittaker-Type Operator

被引:1
|
作者
Ezquerro, J. A. [1 ]
Hernandez-Veron, M. A. [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Calle Madre de Dios 53, Logrono La Rioja 26006, Spain
关键词
Whittaker-type operator; fixed point theorem; global convergence; Fredholm integral equation; GLOBAL CONVERGENCE; NEWTONS METHOD; DOMAINS;
D O I
10.1007/s00009-021-01944-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the global convergence of a Whittaker-type iterative method and obtain restricted global convergence domains, so that we can locate and separate solutions of Fredholm-Nemytskii nonlinear integral equations by means of balls. For this, we use two techniques, one based on the well-known fixed point theorem and the other on a system of recurrence relations. In both techniques, we use the Whittaker-type operator involved and auxiliary functions.
引用
收藏
页数:20
相关论文
共 43 条
  • [1] Location of Solutions of Fredholm–Nemytskii Integral Equations from a Whittaker-Type Operator
    J. A. Ezquerro
    M. A. Hernández-Verón
    Mediterranean Journal of Mathematics, 2022, 19
  • [2] Domains of global convergence for a type of nonlinear Fredholm-Nemytskii integral equations
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    APPLIED NUMERICAL MATHEMATICS, 2019, 146 : 452 - 468
  • [3] Three positive solutions of a system of Fredholm integral equations
    Sun, JP
    Zhao, YH
    APPLIED MATHEMATICS LETTERS, 2004, 17 (09) : 1091 - 1096
  • [4] On the existence of solutions of nonlinear Fredholm integral equations from Kantorovich's technique
    Ezquerro J.A.
    Hernández-Verón M.
    Ezquerro, José Antonio (jezquer@unirioja.es), 1600, MDPI AG (10):
  • [5] Exact Bounds and Approximating Solutions to the Fredholm Integral Equations of Chandrasekhar Type
    Feng, Sheng-Ya
    Chang, Der-Chen
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (02): : 409 - 425
  • [6] Localization and separation of solutions for Fredholm integral equations
    Hernandez-Veron, M. A.
    Ibanez, Maria
    Martinez, Eulalia
    Singh, Sukhjit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [7] EXISTENCE OF SOLUTIONS OF NONLINEAR FREDHOLM-TYPE INTEGRAL EQUATIONS IN HoLDER SPACE
    Bhujel, Manalisha
    Hazarika, Bipan
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (01) : 1 - 10
  • [8] Location, separation and approximation of solutions of nonlinear Hammerstein-type integral equations
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 1 - 10
  • [9] LP solutions to the parameterized Fredholm integral equations associated with Chandrasekhar kernels
    Feng, Sheng-Ya
    Chang, Der-Chen
    APPLICABLE ANALYSIS, 2022, 101 (13) : 4650 - 4667
  • [10] SOLUTIONS OF FREDHOLM TYPE INTEGRAL EQUATIONS VIA THE CLASSICAL SCHAUDER FIXED POINT THEOREM
    Ersoy, Merve Temizer
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (02) : 259 - 270