Oblique and normal transmission problems for Dirac operators with strongly Lipschitz interfaces

被引:7
作者
Axelsson, A [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Ctr Math & Applicat, Canberra, ACT, Australia
关键词
D O I
10.1081/PDE-120025490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate transmission problems with strongly Lipschitz interfaces for the Dirac equation by establishing spectral estimates on an associated boundary singular integral operator, the rotation operator. Using Rellich estimates we obtain angular spectral estimates on both the essential and full spectrum for general bi-oblique transmission problems. Specializing to the normal transmission problem, we investigate transmission problems for Maxwell's equations using a nilpotent exterior/interior derivative operator. The fundamental commutation properties for this operator with the two basic reflection operators are proved. We show how the L-2 spectral estimates are inherited for the domain of the exterior/interior derivative operator and prove some complementary eigenvalue estimates. Finally we use a general algebraic theorem to prove a regularity property needed for Maxwell's equations.
引用
收藏
页码:1911 / 1941
页数:31
相关论文
共 25 条
[1]  
[Anonymous], 1944, TREATISE THEORY BESS
[2]  
[Anonymous], REV MATEMATICA IBERO
[3]  
AXELSSON A, 2002, TRANSMISSION PROBLEM
[4]  
AXELSSON A, 2001, NATO SCI, V2
[5]  
Coifman R.R., 1989, J. Am. Math. Soc., V2, P553
[6]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[7]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[9]  
Hormander L., 1990, ANAL LINEAR PARTIAL, V2
[10]  
Kato T., 1976, GRUNDLEHREN MATH WIS, V132