Low Mach number limit of viscous polytropic fluid flows

被引:19
作者
Ou, Yaobin [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Basque Ctr Appl Math, E-48160 Derio, Basque Country, Spain
基金
中国博士后科学基金;
关键词
Singular limit; Navier-Stokes equations; Mach number; Non-isentropic; COMPRESSIBLE EULER EQUATION; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE LIMIT; SINGULAR LIMITS; IDEAL FLOW; BOUNDARY; SYSTEMS; EXISTENCE; DOMAINS;
D O I
10.1016/j.jde.2011.07.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the singular limit of the non-isentropic Navier-Stokes equations with zero thermal coefficient in a two-dimensional bounded domain as the Mach number goes to zero. A uniform existence result is obtained in a time interval independent of the Mach number, provided that the initial data. satisfy the "bounded derivative conditions", that is, the time derivatives up to order two are bounded initially, and Navier's slip boundary condition is imposed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2037 / 2065
页数:29
相关论文
共 44 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[3]  
Alazard T, 2005, ADV DIFFERENTIAL EQU, V10, P19
[4]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[5]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[6]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[7]   PROBLEMS WITH DIFFERENT TIME SCALES FOR NON-LINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
BROWNING, G ;
KREISS, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :704-718
[8]  
BROWNING G, 1980, J ATMOS SCI, V37, P1424, DOI 10.1175/1520-0469(1980)037<1424:IOTPEB>2.0.CO
[9]  
2
[10]   The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries [J].
Bucur, Dorin ;
Feireisl, Eduard .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3203-3229