Wavelet expansions and fractal dimensions

被引:4
|
作者
Kamont, A
Wolnik, B
机构
[1] PAN, Inst Matemat, PL-81825 Sopot, Poland
[2] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
box dimension; wavelet expansion;
D O I
10.1007/s003659900099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bounds of the upper and lower box dimensions of the graph of a function in terms of the coefficients in its wavelet decomposition are given. An example, that the formula for upper box dimension, given in [4], does not hold, is presented.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [1] Wavelet Expansions and Fractal Dimensions
    A. Kamont
    B. Wolnik
    Constructive Approximation, 1999, 15 : 97 - 108
  • [2] FRACTAL WAVELET DIMENSIONS AND LOCALIZATION
    HOLSCHNEIDER, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (03) : 457 - 473
  • [3] Fractal dimensions and optical wavelet transform
    Feng, Bihua
    Zhang, Chengjun
    Jin, Guojun
    Pan, Yonghua
    Bandaoti Guangdian/Semiconductor Optoelectronics, 2000, 21 (03): : 210 - 213
  • [4] The Harr Wavelet Series Expansions of Some Fractal Functions
    Yang, Xiaoling
    Tan, Ying
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (01) : 189 - 197
  • [5] FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS
    GERONIMO, JS
    HARDIN, DP
    MASSOPUST, PR
    JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) : 373 - 401
  • [6] Moment method with wavelet expansions for fractal rough surface scattering
    Guo, LX
    Wu, ZS
    CHINESE PHYSICS LETTERS, 2002, 19 (11) : 1617 - 1620
  • [7] A wavelet-based measurement of signal fractal dimensions
    Langi, AZR
    Nugraha, HB
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1001 - 1004
  • [8] Biorthogonal Wavelet Expansions
    W. Dahmen
    C. A. Micchelli
    Constructive Approximation, 1997, 13 : 293 - 328
  • [9] Biorthogonal wavelet expansions
    Dahmen, W
    Micchelli, CA
    CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) : 293 - 328
  • [10] HERMITE EXPANSIONS AND FRACTAL MEASURES
    张震球
    Acta Mathematica Scientia, 1998, (02) : 167 - 173