Different approaches for the solution of a backward heat conduction problem

被引:38
作者
Chiwiacowsky, LD [1 ]
Velho, HFD [1 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Lab Associado Computacao & Matemat Aplicada, BR-12201970 Sao Jose Dos Campos, SP, Brazil
来源
INVERSE PROBLEMS IN ENGINEERING | 2003年 / 11卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
inverse problem; heat conduction; Alifanov's iterative regularization method; regularized solutions; epidemical genetic algorithms;
D O I
10.1080/1068276031000098027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a comparison of three different techniques to solve the inverse heat conduction problem involving the estimation of the unknown initial condition for a one-dimensional slab, whose solution is obtained through minimization of a known functional form. The following techniques are employed to solve the inverse problem: the conjugate gradient method with the adjoint equation, regularized solution using a quasi-Newton method, and regularized solution via genetic algorithm (GA) method. For the first one, a general form to compute the gradient of the functional form (considering the time and space domains) is presented, and for the GA method a new genetic operator named epidemical is applied.
引用
收藏
页码:471 / 494
页数:24
相关论文
共 30 条
[1]  
Alifanov O. M., 1974, Journal of Engineering Physics, V26, P471, DOI 10.1007/BF00827525
[2]  
Alifanov O. M., 1985, Journal of Engineering Physics, V48, P489, DOI 10.1007/BF00872080
[3]  
BARBOSA HJC, 2001, P 9 INT S DYN PROBL
[4]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[5]  
de Campos Velho H.F., 1997, BRAZ J GEOPHYS, V15, P133
[6]  
*E04UCF, 1993, NAG FORTR LIB MARK 1
[7]  
ESHELMAN LJ, 1993, FOUNDATIONS OF GENETIC ALGORITHMS 2, P187
[8]  
Goldberg D. E., 1989, GENETIC ALGORITHMS S
[9]  
Hadamard J., 1923, LECT CAUCH PROBL LIN
[10]  
Holland J., 1992, ADAPTATION NATURAL A