Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images

被引:57
作者
Wang, Chengdi [1 ]
Ma, Jiechao [2 ]
Shao, Jun [1 ]
Zhang, Shu [2 ]
Liu, Zhongnan [2 ]
Yu, Yizhou [2 ,3 ]
Li, Weimin [1 ]
机构
[1] Sichuan Univ, Natl Clin Res Ctr Geriatr, Frontiers Sci Ctr Dis Related Mol Network,Med Ctr, West China Hosp,West China Sch Med,Dept Resp & Cr, Chengdu, Peoples R China
[2] Deepwise Healthcare, AI Lab, Beijing, Peoples R China
[3] Univ Hong Kong, Fac Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
EGFR; PD-L1; NSCLC; deep learning; computed tomography; CELL LUNG-CANCER; INHIBITORS; EXPRESSION; CHINA;
D O I
10.3389/fimmu.2022.813072
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundEpidermal growth factor receptor (EGFR) genotyping and programmed death ligand-1 (PD-L1) expressions are of paramount importance for treatment guidelines such as the use of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) in lung cancer. Conventional identification of EGFR or PD-L1 status requires surgical or biopsied tumor specimens, which are obtained through invasive procedures associated with risk of morbidities and may be unavailable to access tissue samples. Here, we developed an artificial intelligence (AI) system that can predict EGFR and PD-L1 status in using non-invasive computed tomography (CT) images. MethodsA multitask AI system including deep learning (DL) module, radiomics (RA) module, and joint (JO) module combining the DL, RA, and clinical features was developed, trained, and optimized with CT images to predict the EGFR and PD-L1 status. We used feature selectors and feature fusion methods to find the best model among combinations of module types. The models were evaluated using the areas under the receiver operating characteristic curves (AUCs). ResultsOur multitask AI system yielded promising performance for gene expression status, subtype classification, and joint prediction. The AUCs of DL module achieved 0.842 (95% CI, 0.825-0.855) in the EGFR mutated status and 0.805 (95% CI, 0.779-0.829) in the mutated-EGFR subtypes discrimination (19Del, L858R, other mutations). DL module also demonstrated the AUCs of 0.799 (95% CI, 0.762-0.854) in the PD-L1 expression status and 0.837 (95% CI, 0.775-0.911) in the positive-PD-L1 subtypes (PD-L1 tumor proportion score, 1%-49% and >= 50%). Furthermore, the JO module of our AI system performed well in the EGFR and PD-L1 joint cohort, with an AUC of 0.928 (95% CI, 0.909-0.946) for distinguishing EGFR mutated status and 0.905 (95% CI, 0.886-0.930) for discriminating PD-L1 expression status. ConclusionOur AI system has demonstrated the encouraging results for identifying gene status and further assessing the genotypes. Both clinical indicators and radiomics features showed a complementary role in prediction and provided accurate estimates to predict EGFR and PD-L1 status. Furthermore, this non-invasive, high-throughput, and interpretable AI system can be used as an assistive tool in conjunction with or in lieu of ancillary tests and extensive diagnostic workups to facilitate early intervention.
引用
收藏
页数:12
相关论文
共 29 条
[1]   Deep Learning to Estimate RECIST in Patients with NSCLC Treated with PD-1 Blockade [J].
Arbour, Kathryn C. ;
Luu, Anh Tuan ;
Luo, Jia ;
Rizvi, Hira ;
Plodkowski, Andrew J. ;
Sakhi, Mustafa ;
Huang, Kevin B. ;
Digumarthy, Subba R. ;
Ginsberg, Michelle S. ;
Girshman, Jeffrey ;
Kris, Mark G. ;
Riely, Gregory J. ;
Yala, Adam ;
Gainor, Justin F. ;
Barzilay, Regina ;
Hellmann, Matthew D. .
CANCER DISCOVERY, 2021, 11 (01) :59-67
[2]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[3]   PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review [J].
Brody, Robert ;
Zhang, Yiduo ;
Ballas, Marc ;
Siddiqui, Mohd Kashif ;
Gupta, Palvi ;
Barker, Craig ;
Midha, Anita ;
Walker, Jill .
LUNG CANCER, 2017, 112 :200-215
[4]   Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non-Small-Cell Lung Cancer [J].
Buttner, Reinhard ;
Gosney, John R. ;
Skov, Birgit Guldhammer ;
Adam, Julien ;
Motoi, Noriko ;
Bloom, Kenneth J. ;
Dietel, Manfred ;
Longshore, John W. ;
Lopez-Rios, Fernando ;
Penault-Llorca, Frederique ;
Viale, Giuseppe ;
Wotherspoon, Andrew C. ;
Kerr, Keith M. ;
Tsao, Ming-Sound .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (34) :3867-+
[5]   Elements of cancer immunity and the cancer-immune set point [J].
Chen, Daniel S. ;
Mellman, Ira .
NATURE, 2017, 541 (7637) :321-330
[6]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[7]   Non-Small Cell Lung Cancer, Version 2.2021 Featured Updates to the NCCN Guidelines [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Hennon, Mark ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Leal, Ticiana A. ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Lovly, Christine M. ;
Martins, Renato G. ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Gregory, Kristina M. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :254-266
[8]   EGFR variant allele frequency predicts EGFR-TKI efficacy in lung adenocarcinoma: a multicenter study [J].
Gieszer, Balazs ;
Megyesfalvi, Zsolt ;
Dulai, Viktoria ;
Papay, Judit ;
Kovalszky, Ilona ;
Timar, Jozsef ;
Fillinger, Janos ;
Harko, Tunde ;
Pipek, Orsolya ;
Teglasi, Vanda ;
Regos, Eszter ;
Papp, Gergo ;
Szallasi, Zoltan ;
Laszlo, Viktoria ;
Renyi-Vamos, Ferenc ;
Galffy, Gabriella ;
Bodor, Csaba ;
Dome, Balazs ;
Moldvay, Judit .
TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) :662-+
[9]   Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC [J].
Herbst, Roy S. ;
Giaccone, Giuseppe ;
de Marinis, Filippo ;
Reinmuth, Niels ;
Vergnenegre, Alain ;
Barrios, Carlos H. ;
Morise, Masahiro ;
Felip, Enriqueta ;
Andric, Zoran ;
Geater, Sarayut ;
Ozguroglu, Mustafa ;
Zou, Wei ;
Sandler, Alan ;
Enquist, Ida ;
Komatsubara, Kimberly ;
Deng, Yu ;
Kuriki, Hiroshi ;
Wen, Xiaohui ;
McCleland, Mark ;
Mocci, Simonetta ;
Jassem, Jacek ;
Spigel, David R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (14) :1328-1339
[10]   The biology and management of non-small cell lung cancer [J].
Herbst, Roy S. ;
Morgensztern, Daniel ;
Boshoff, Chris .
NATURE, 2018, 553 (7689) :446-454