Microfluidics-Based Assessment of Cell Deformability

被引:152
作者
Adamo, Andrea [1 ]
Sharei, Armon [1 ]
Adamo, Luigi [2 ]
Lee, ByungKun [3 ]
Mao, Shirley [1 ]
Jensen, Klavs F. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Washington Univ, Dept Med, Sch Med St Louis, St Louis, MO 63110 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
ATOMIC-FORCE MICROSCOPY; CANCER-CELLS; BIOLOGICAL-MATERIALS; FLOW CYTOMETER; LIVING CELLS; MECHANICS; BIOMECHANICS; SPECTROSCOPY; DISEASES;
D O I
10.1021/ac300264v
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mechanical properties of cells have been shown to have a significant role in disease, as in many instances cell stiffness changes when a cell is no longer healthy. We present a high-throughput microfluidics-based approach that exploits the connection between travel time of a cell through a narrow passage and cell stiffness. The system resolves both cell travel time and relative cell diameter while retaining information on the cell level. We show that stiffer cells have longer transit times than less stiff ones and that cell size significantly influences travel times. Experiments with untreated HeLa cells and cells made compliant with latrunculin A and cytochalasin B further demonstrate that travel time is influenced by cell stiffness, with the compliant cells having faster transit time.
引用
收藏
页码:6438 / 6443
页数:6
相关论文
共 25 条
[1]   Cell and molecular mechanics of biological materials [J].
Bao, G ;
Suresh, S .
NATURE MATERIALS, 2003, 2 (11) :715-725
[2]   Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells [J].
Beil, M ;
Micoulet, A ;
von Wichert, G ;
Paschke, S ;
Walther, P ;
Omary, MB ;
Van Veldhoven, PP ;
Gern, U ;
Wolff-Hieber, E ;
Eggermann, J ;
Waltenberger, J ;
Adler, G ;
Spatz, J ;
Seufferlein, T .
NATURE CELL BIOLOGY, 2003, 5 (09) :803-811
[3]  
Bow H, 2011, LAB CHIP, V11, P1065, DOI [10.1039/c0lc00472c, 10.1039/c01c00472c]
[4]  
Coulter W. H., 1956, Proceedings of the National Electronics Conference, V12, P1034
[5]  
FOSTER KR, 1989, CRIT REV BIOMED ENG, V17, P25
[6]   Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations [J].
Gawad, S ;
Cheung, K ;
Seger, U ;
Bertsch, A ;
Renaud, P .
LAB ON A CHIP, 2004, 4 (03) :241-251
[7]   Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing [J].
Gawad, S ;
Schild, L ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :76-82
[8]   Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence [J].
Guck, J ;
Schinkinger, S ;
Lincoln, B ;
Wottawah, F ;
Ebert, S ;
Romeyke, M ;
Lenz, D ;
Erickson, HM ;
Ananthakrishnan, R ;
Mitchell, D ;
Käs, J ;
Ulvick, S ;
Bilby, C .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3689-3698
[9]   Micropipette aspiration of living cells [J].
Hochmuth, RM .
JOURNAL OF BIOMECHANICS, 2000, 33 (01) :15-22
[10]   Deformability study of breast cancer cells using microfluidics [J].
Hou, H. W. ;
Li, Q. S. ;
Lee, G. Y. H. ;
Kumar, A. P. ;
Ong, C. N. ;
Lim, C. T. .
BIOMEDICAL MICRODEVICES, 2009, 11 (03) :557-564