Spectrality of infinite Bernoulli convolutions

被引:53
作者
An, Li-Xiang [1 ]
He, Xing-Gang [1 ]
Li, Hai-Xiang [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] HuBei Univ Educ, Sch Math & Stat, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Borel probability measure; Infinite Bernoulli convolution; Orthonormal basis of functions; Ramsey Theorem; Self-similar; Spectral measure; Spectrum; DENSE ANALYTIC SUBSPACES; FUGLEDES CONJECTURE; PROPERTY;
D O I
10.1016/j.jfa.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {b(k) - a(k)}(k=1)(infinity) be a sequence of positive integers with upper bound and let delta(E) be the uniformly discrete probability measure on the finite set E. For 0 < rho < 1, the infinite convolution mu(rho), {a(k), b(k)} = delta(rho{a1), (b1}) * delta(rho 2{a2, b2}) *...... is called an infinite Bernoulli convolution. In this paper, we investigate whenever there exists Lambda such that {e(-2 pi i lambda x)}(lambda is an element of Lambda) is an orthonormal basis for L-2(mu(p),({ak, bk})). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1571 / 1590
页数:20
相关论文
共 29 条
[1]  
An L.-X., PREPRINT
[2]   A class of spectral Moran measures [J].
An, Li-Xiang ;
He, Xing-Gang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :343-354
[3]   On spectral N-Bernoulli measures [J].
Dai, Xin-Rong ;
He, Xing-Gang ;
Lau, Ka-Sing .
ADVANCES IN MATHEMATICS, 2014, 259 :511-531
[4]   Spectral property of Cantor measures with consecutive digits [J].
Dai, Xin-Rong ;
He, Xing-Gang ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2013, 242 :187-208
[5]   When does a Bernoulli convolution admit a spectrum? [J].
Dai, Xin-Rong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1681-1693
[6]   Fourier frequencies in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) :110-137
[7]   Uniformity of measures with Fourier frames [J].
Dutkay, Dorin Ervin ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2014, 252 :684-707
[8]   On the Beurling dimension of exponential frames [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu ;
Weber, Eric .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :285-297
[9]   On the spectra of a Cantor measure [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :251-276
[10]  
Falconer K., 2014, Fractal geometry: mathematical foundations and applications