Practical device-independent quantum cryptography via entropy accumulation

被引:149
作者
Arnon-Friedman, Rotem [1 ]
Dupuis, Frederic [2 ,3 ]
Fawzi, Omar [4 ]
Renner, Renato [1 ]
Vidick, Thomas [5 ]
机构
[1] ETH, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
[3] Univ Lorraine, LORIA, CNRS, Campus Sci,BP 239, F-54506 Vandoeuvre Les Nancy, France
[4] ENS Lyon, LIP, 46 Allee Italie, F-69364 Lyon 07, France
[5] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
LOOPHOLE-FREE TEST; SYSTEMS;
D O I
10.1038/s41467-017-02307-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.
引用
收藏
页数:11
相关论文
共 46 条
[11]  
Brunner N, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.419
[12]   Finite de Finetti theorem for conditional probability distributions describing physical theories [J].
Christandl, Matthias ;
Toner, Ben .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
[13]   Postselection Technique for Quantum Channels with Applications to Quantum Cryptography [J].
Christandl, Matthias ;
Koenig, Robert ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[14]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[15]   TREVISAN'S EXTRACTOR IN THE PRESENCE OF QUANTUM SIDE INFORMATION [J].
De, Anindya ;
Portmann, Christopher ;
Vidick, Thomas ;
Renner, Renato .
SIAM JOURNAL ON COMPUTING, 2012, 41 (04) :915-940
[16]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[17]   The ultimate physical limits of privacy [J].
Ekert, Artur ;
Renner, Renato .
NATURE, 2014, 507 (7493) :443-447
[18]   Phase-remapping attack in practical quantum-key-distribution systems [J].
Fung, Chi-Hang Fred ;
Qi, Bing ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 75 (03)
[19]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[20]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2