Evaluation of Ranks of Real Space and Particle Entanglement Spectra for Large Systems

被引:52
作者
Rodriguez, Ivan D. [1 ]
Simon, Steven H. [2 ]
Slingerland, J. K. [1 ,3 ]
机构
[1] Natl Univ Ireland, Dept Math Phys, Maynooth, Kildare, Ireland
[2] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[3] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM HALL STATES;
D O I
10.1103/PhysRevLett.108.256806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We devise a way to calculate the dimensions of symmetry sectors appearing in the particle entanglement spectrum (PES) and real space entanglement spectrum (RSES) of multiparticle systems from their real space wave functions. We first note that these ranks in the entanglement spectra equal the dimensions of spaces of wave functions with a number of particles fixed. This also yields equality of the multiplicities in the PES and the RSES. Our technique allows numerical calculations for much larger systems than were previously feasible. For somewhat smaller systems, we can find approximate entanglement energies as well as multiplicities. We illustrate the method with results on the RSES and PES multiplicities for integer quantum Hall states, Laughlin and Jain composite fermion states, and for the Moore-Read state at filling nu = 5/2 for system sizes up to 70 particles.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Bulk-edge correspondence in entanglement spectra [J].
Chandran, Anushya ;
Hermanns, M. ;
Regnault, N. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 84 (20)
[2]   Real-space entanglement spectrum of quantum Hall systems [J].
Dubail, J. ;
Read, N. ;
Rezayi, E. H. .
PHYSICAL REVIEW B, 2012, 85 (11)
[3]   Entanglement Spectrum of Topological Insulators and Superconductors [J].
Fidkowski, Lukasz .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Entanglement entropy in fermionic Laughlin states [J].
Haque, Masudul ;
Zozulya, Oleksandr ;
Schoutens, Kareljan .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[6]   Haldane statistics in the finite-size entanglement spectra of 1/m fractional quantum Hall states [J].
Hermanns, M. ;
Chandran, A. ;
Regnault, N. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 84 (12)
[7]   Entropy and exact matrix-product representation of the Laughlin wave function [J].
Iblisdir, S. ;
Latorre, J. I. ;
Orus, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[8]   COMPOSITE-FERMION APPROACH FOR THE FRACTIONAL QUANTUM HALL-EFFECT [J].
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :199-202
[9]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[10]   Detecting topological order in a ground state wave function [J].
Levin, M ;
Wen, XG .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)