Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform

被引:18
作者
Janssen, Augustus J. E. M.
Dirksen, Peter
机构
[1] Philips Research Europe
[2] Philips Research Europe
关键词
Zernike polynomial; aberration; high-order; discrete Fourier transform; NA-scaling;
D O I
10.2971/jeos.2007.07012
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The conventional representation of Zernike polynomials R(n)(m) (rho) gives unacceptable numerical results for large values of the degree n. We present an algorithm for the computation of Zernike polynomials of arbitrary degree n. The algorithm has the form of a discrete Fourier (cosine) transform which comes with advantages over other methods in terms of computation time, accuracy and ease of implementation. As an application we consider the effect of NA-scaling on the lower-order aberrations of an optical system in the presence of a very high order aberration. [DOI:10.2971/jeos.2007.07012]
引用
收藏
页数:3
相关论文
共 9 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
BORN M, 2001, PRINCIPLES OPTICS, V7, pCH9
[3]  
CALVETTI D, 1991, MATH COMPUT, V56, P755, DOI 10.1090/S0025-5718-1991-1068824-0
[4]  
Daniel M., 2006, Optical Shop Testing
[5]  
Deans S., 1983, RADON TRANSFORM SOME
[6]   Concise formula for the Zernike coefficients of scaled pupils [J].
Janssen, Augustus J. E. M. ;
Dirksen, Peter .
JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS, 2006, 5 (03)
[7]   ZERNIKE CIRCLE POLYNOMIALS AND OPTICAL ABERRATIONS OF SYSTEMS WITH CIRCULAR PUPILS [J].
MAHAJAN, VN .
APPLIED OPTICS, 1994, 33 (34) :8121-8124
[8]   ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE [J].
NOLL, RJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) :207-211
[9]   ALGORITHM FOR COMPUTATION OF ZERNIKE POLYNOMIALS EXPANSION COEFFICIENTS [J].
PRATA, A ;
RUSCH, WVT .
APPLIED OPTICS, 1989, 28 (04) :749-754