Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning

被引:26
作者
Kleynhans, Tania [1 ]
Montanaro, Matthew [1 ]
Gerace, Aaron [1 ]
Kanan, Christopher [1 ]
机构
[1] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA
关键词
MERRA-2; support vector regression; multi-layer perceptron; convolutional neural network; REGRESSION;
D O I
10.3390/rs9111133
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Image data from space-borne thermal infrared (IR) sensors are used for a variety of applications, however they are often limited by their temporal resolution (i.e., repeat coverage). To potentially increase the temporal availability of thermal image data, a study was performed to determine the extent to which thermal image data can be simulated from available atmospheric and surface data. The work conducted here explored the use of Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) developed by The National Aeronautics and Space Administration (NASA) to predict top-of-atmosphere (TOA) thermal IR radiance globally at time scales finer than available satellite data. For this case study, TOA radiance data was derived for band 31 (10.97 m) of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor. Two approaches have been followed, namely an atmospheric radiative transfer forward modeling approach and a supervised learning approach. The first approach uses forward modeling to predict TOA radiance from the available surface and atmospheric data. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi-layer perceptron (MLP), and a convolutional neural network (CNN). This research found that the multi-layer perceptron model produced the lowest overall error rates with an root mean square error (RMSE) of 1.36 W/m(2) <bold>sr</bold> m when compared to actual Terra/MODIS band 31 image data. These studies found that for radiances above 6 W/m(2) <bold>sr</bold> m, the forward modeling approach could predict TOA radiance to within 12 percent, and the best supervised learning approach can predict TOA to within 11 percent.
引用
收藏
页数:16
相关论文
共 32 条
[1]  
[Anonymous], J IND ENG INT
[2]  
[Anonymous], 2016, NASATM2016104606
[3]  
Armstrong E., Modis sea surface temperature (sst) products
[4]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626
[5]  
Berk A., 1988, TECHNICAL REPORT
[6]  
Chollet and Francois, 2015, KERAS
[7]  
Drucker H, 1997, ADV NEUR IN, V9, P155
[8]  
Friedl MA., 2010, MODIS COLLECTION 5 G
[9]   The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [J].
Gelaro, Ronald ;
McCarty, Will ;
Suarez, Max J. ;
Todling, Ricardo ;
Molod, Andrea ;
Takacs, Lawrence ;
Randles, Cynthia A. ;
Darmenov, Anton ;
Bosilovich, Michael G. ;
Reichle, Rolf ;
Wargan, Krzysztof ;
Coy, Lawrence ;
Cullather, Richard ;
Draper, Clara ;
Akella, Santha ;
Buchard, Virginie ;
Conaty, Austin ;
da Silva, Arlindo M. ;
Gu, Wei ;
Kim, Gi-Kong ;
Koster, Randal ;
Lucchesi, Robert ;
Merkova, Dagmar ;
Nielsen, Jon Eric ;
Partyka, Gary ;
Pawson, Steven ;
Putman, William ;
Rienecker, Michele ;
Schubert, Siegfried D. ;
Sienkiewicz, Meta ;
Zhao, Bin .
JOURNAL OF CLIMATE, 2017, 30 (14) :5419-5454
[10]   Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8 [J].
Gerace, Aaron ;
Montanaro, Matthew .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :246-257