Periodicity and arithmetic-periodicity in hexadecimal games

被引:4
作者
Howse, S [1 ]
Nowakowski, RJ [1 ]
机构
[1] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
关键词
combinatorial game; hexadecimal; impartial game; periodicity; regularities; taking-and-breaking;
D O I
10.1016/j.tcs.2003.08.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate 1-, 2- and some k-digit (k greater than or equal to 3) hexadecimal games with the help of a new arithmetic-periodicity theorem. We also note that not all hexadecimal games are periodic or arithmetic-periodic. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 12 条
[1]   SUPERLINEAR PERIOD LENGTHS IN SOME SUBTRACTION GAMES [J].
ALTHOFER, I ;
BULTERMANN, J .
THEORETICAL COMPUTER SCIENCE, 1995, 148 (01) :111-119
[2]  
[Anonymous], 2020, CRUX MATH
[3]  
AUSTIN RB, 1976, THESIS U CALGARY
[4]  
Caines I., 1999, AM MATH MONTHLY, V106, P359
[5]  
Conway J.H., 2001, NUMBERS GAMES
[6]  
Flammenkamp A., SPRAGUE GRUNDY VALUE
[7]   A NOTE ON PERIODICITY IN SOME OCTAL GAMES [J].
GANGOLLI, A ;
PLAMBECK, T .
INTERNATIONAL JOURNAL OF GAME THEORY, 1989, 18 (03) :311-320
[8]  
GROSSMAN JP, UNPUB RULER REGULARI
[9]  
HORROCKS DG, 2003, INTEGERS, V3, pG3
[10]  
NOWAKOWSKI RJ, NIM VALUES 3 DIGIT H