Detecting event-related changes of multivariate phase coupling in dynamic brain networks

被引:19
作者
Canolty, Ryan T. [1 ,2 ]
Cadieu, Charles F. [2 ,3 ]
Koepsell, Kilian [2 ,3 ]
Ganguly, Karunesh [1 ,2 ,4 ,5 ]
Knight, Robert T. [2 ,5 ,6 ]
Carmena, Jose M. [1 ,2 ,7 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, San Francisco Vet Affairs Med Ctr, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA
[6] Univ Calif Berkeley, Dept Psychol, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Program Cognit Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
neuronal oscillations; phase-locking value; functional networks; multivariate analysis; MECHANISM;
D O I
10.1152/jn.00610.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Canolty RT, Cadieu CF, Koepsell K, Ganguly K, Knight RT, Carmena JM. Detecting event-related changes of multivariate phase coupling in dynamic brain networks. J Neurophysiol 107: 2020-2031, 2012. First published January 12, 2011; doi: 10.1152/jn. 00610.2011.Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCEestimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.
引用
收藏
页码:2020 / 2031
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[2]   Phase Coupling Estimation from Multivariate Phase Statistics [J].
Cadieu, Charles F. ;
Koepsell, Kilian .
NEURAL COMPUTATION, 2010, 22 (12) :3107-3126
[3]   Spatiotemporal dynamics of word processing in the human brain [J].
Canolty, Ryan T. ;
Soltani, Maryam ;
Dalal, Sarang S. ;
Edwards, Erik ;
Dronkers, Nina F. ;
Nagarajan, Srikantan S. ;
Kirsch, Heidi E. ;
Barbaro, Nicholas M. ;
Knight, Robert T. .
FRONTIERS IN NEUROSCIENCE, 2007, 1 (01) :185-196
[4]   Multivariate Phase-Amplitude Cross-Frequency Coupling in Neurophysiological Signals [J].
Canolty, Ryan T. ;
Cadieu, Charles F. ;
Koepsell, Kilian ;
Knight, Robert T. ;
Carmena, Jose M. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (01) :8-11
[5]   The functional role of cross-frequency coupling [J].
Canolty, Ryan T. ;
Knight, Robert T. .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (11) :506-515
[6]   Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies [J].
Canolty, Ryan T. ;
Ganguly, Karunesh ;
Kennerley, Steven W. ;
Cadieu, Charles F. ;
Koepsell, Kilian ;
Wallis, Jonathan D. ;
Carmena, Jose M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (40) :17356-17361
[7]   COHERENCE AND TIME-DELAY ESTIMATION [J].
CARTER, GC .
PROCEEDINGS OF THE IEEE, 1987, 75 (02) :236-255
[8]  
Durka P., 2007, MATCHING PURSUIT UNI
[9]  
Evans M., 2000, Statistical Distributions, V3rd, P189
[10]   A mechanism for cognitive dynamics: neuronal communication through neuronal coherence [J].
Fries, P .
TRENDS IN COGNITIVE SCIENCES, 2005, 9 (10) :474-480