Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells

被引:327
作者
Zhao, Jian [1 ,2 ]
Gao, Jinhong [1 ,2 ]
Xue, Wenting [1 ,2 ]
Di, Zhenghan [1 ,2 ]
Xing, Hang [3 ]
Lu, Yi [4 ]
Li, Lele [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Inst Chem Biol & Nanomed, Changsha 410082, Hunan, Peoples R China
[4] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
关键词
IN-VIVO; TARGETED TRANSPORT; METAL-IONS; NANOPARTICLES; DNAZYME; NANOCRYSTALS; NANOPROBES; THERAPY; SENSORS; SURFACE;
D O I
10.1021/jacs.7b11161
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designer DNA nanodevices have attracted extensive interest for detection of specific targets in living cells. However, it still, remains a great challenge to construct DNA sensing devices that can be activated at desired time with a remotely applied stimulus. Here we report a rationally designed, synthetic DNA nanodevice that can detect ATP in living cells in an upconversion luminescence-activatable manner. The nanodevice consists of a UV light-activatable aptamer probe and lanthanide-doped upconversion nanoparticles which acts as the nanotransducers to operate the device in response to NIR light. We demonstrate that the nanodevice not only enables efficient cellular delivery of the aptamer probe into live cells, but also allows the temporal control over its fluorescent sensing activity for ATP by NIR. light irradiation in vitro and in vivo. Ultimately, with the availability of diverse aptamers selected in vitro, the DNA nanodevice platform will allow NIR-triggered sensing of various targets as well as modulation of biological functions in living systems.
引用
收藏
页码:578 / 581
页数:4
相关论文
共 40 条
[1]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
[2]   Light-Controlled Tools [J].
Brieke, Clara ;
Rohrbach, Falk ;
Gottschalk, Alexander ;
Mayer, Guenter ;
Heckel, Alexander .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (34) :8446-8476
[3]   Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor [J].
Chen, Ting-Ting ;
Tian, Xue ;
Liu, Chen-Liwei ;
Ge, Jia ;
Chu, Xia ;
Li, Yingfu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (02) :982-989
[4]  
Chen YJ, 2015, NAT NANOTECHNOL, V10, P748, DOI [10.1038/nnano.2015.195, 10.1038/NNANO.2015.195]
[5]   Spherical Nucleic Acids [J].
Cutler, Joshua I. ;
Auyeung, Evelyn ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1376-1391
[6]   Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy [J].
Dong, Hao ;
Du, Shuo-Ren ;
Zheng, Xiao-Yu ;
Lyu, Guang-Ming ;
Sun, Ling-Dong ;
Li, Lin-Dong ;
Zhang, Pei-Zhi ;
Zhang, Chao ;
Yan, Chun-Hua .
CHEMICAL REVIEWS, 2015, 115 (19) :10725-10815
[7]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[8]  
Groves B, 2016, NAT NANOTECHNOL, V11, P287, DOI [10.1038/nnano.2015.278, 10.1038/NNANO.2015.278]
[9]   Upconverting Nanoparticles [J].
Haase, Markus ;
Schaefer, Helmut .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5808-5829
[10]   Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells [J].
Hwang, Kevin ;
Wu, Peiwen ;
Kim, Taejin ;
Lei, Lei ;
Tian, Shiliang ;
Wang, Yingxiao ;
Lu, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (50) :13798-13802