PARAMETRIZATION, STRUCTURE AND BRUHAT ORDER OF CERTAIN SPHERICAL QUOTIENTS

被引:4
作者
Chaput, Pierre-Emmanuel [1 ]
Fresse, Lucas [1 ]
Gobet, Thomas [2 ]
机构
[1] Univ Lorraine, CNRS, Inst Elie Cartan Lorraine, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Tours, Inst Denis Poisson, Fac Sci & Tech, CNRS,UMR 7350, Parc Grandmont, F-37200 Tours, France
关键词
NILPOTENT ORBITS; CLOSURES; ELEMENTS;
D O I
10.1090/ert/584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a reductive algebraic group and let Z be the stabilizer of a nilpotent element e of the Lie algebra of G. We consider the action of Z on the flag variety of G, and we focus on the case where this action has a finite number of orbits (i.e., Z is a spherical subgroup). This holds for instance if e has height 2. In this case we give a parametrization of the Z-orbits and we show that each Z-orbit has a structure of algebraic affine bundle. In particular, in type A, we deduce that each orbit has a natural cell decomposition. In the aim to study the (strong) Bruhat order of the orbits, we define an abstract partial order on certain quotients associated to a Coxeter system. In type A, we show that the Bruhat order of the Z-orbits can be described in this way.
引用
收藏
页码:935 / 974
页数:40
相关论文
共 22 条
[1]   SINGULARITIES OF CLOSURES OF B-CONJUGACY CLASSES OF NILPOTENT ELEMENTS OF HEIGHT 2 [J].
Bender, M. ;
Perrin, N. .
TRANSFORMATION GROUPS, 2019, 24 (03) :741-768
[2]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[3]  
Bjorner Anders, 1996, ELECTRON J COMB, V3
[4]  
Boos M, 2019, J LIE THEORY, V29, P969
[5]  
Boos M, 2012, PROG MATH, V295, P147, DOI 10.1007/978-0-8176-8274-3_6
[6]   CLASSIFICATION OF STRICT WONDERFUL VARIETIES [J].
Bravi, Paolo ;
Cupit-Foutou, Stephanie .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (02) :641-681
[7]   Rational smoothness and fixed points of torus actions [J].
Brion, M .
TRANSFORMATION GROUPS, 1999, 4 (2-3) :127-156
[8]   On orbit closures of spherical subgroups in flag varieties [J].
Brion, M .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (02) :263-299
[9]  
COLLINGWOOD D. H., 1993, Nilpotent orbits in semisimple Lie algebras
[10]   SOME CHARACTERIZATIONS OF BRUHAT ORDERING ON A COXETER GROUP AND DETERMINATION OF RELATIVE MOBIUS FUNCTION [J].
DEODHAR, VV .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :187-198