Diophantine approximation with one prime and three squares of primes

被引:12
作者
Li, Weiping [1 ]
Wang, Tianze [2 ]
机构
[1] Henan Univ Finance & Econ, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] N China Univ Water Conservancy & Elect Power, Sch Math & Informat Sci, Zhengzhou 450011, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine approximation; Prime; Davenport-Heilbronn method; NUMBERS; SUMS;
D O I
10.1007/s11139-010-9290-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if lambda(1), lambda(2), lambda(3), lambda(4) are nonzero real numbers, not all of the same sign, eta is real, and at least one of the ratios lambda(1)/lambda(j) (j = 2, 3, 4) is irrational, then given any real number omega > 0, there are infinitely many ordered quadruples of primes (p(1), p(2), p(3), p(4)) for which |lambda(1)p(1) + lambda(2)p(2)(2) + lambda(3)p(3)(2) + lambda(4)p(4)(2) + eta| < (max p(j))(-1/28+omega).
引用
收藏
页码:343 / 357
页数:15
相关论文
共 14 条
[1]  
BAKER A, 1967, J REINE ANGEW MATH, V228, P166
[2]  
BAKER RC, 1982, J LOND MATH SOC, V25, P25
[3]  
Davenport H., 1946, J. London Math. Soc, V21, P185, DOI [10.1112/jlms/s1-21.3.185, DOI 10.1112/JLMS/S1-21.3.185]
[4]  
GHOSH A, 1981, P LOND MATH SOC, V42, P252
[5]   The values of ternary quadratic forms at prime arguments [J].
Harman, G .
MATHEMATIKA, 2004, 51 (101-02) :83-96
[6]  
HARMAN G, 1991, J LOND MATH SOC, V44, P218
[7]  
HUA LK, 1938, Q J MATH OXFORD SER, V9, P68
[8]   DIOPHANTINE APPROXIMATION BY PRIMES [J].
Matomaki, Kaisa .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :87-106
[9]  
MONTGOMERY HL, 1967, LECT NOTES MATH, V227
[10]  
RAMACHANDRA K, 1973, J REINE ANGEW MATH, V262, P158