Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction

被引:110
作者
Leung, Siu-Fung [1 ]
Fu, Hui-Chun [1 ]
Zhang, Maolin [1 ]
Hassan, Ali H. [1 ]
Jiang, Tao [2 ]
Salama, Khaled N. [1 ]
Wang, Zhonglin [3 ]
He, Jr-Hau [1 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, Beijing 100083, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Peoples R China
关键词
OXYGEN EVOLUTION REACTION; TRIBOELECTRIC NANOGENERATOR; OPTIMIZATION;
D O I
10.1039/c9ee03566d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sequestering CO2 in the form of carbon-based liquid fuels would provide both a convenient and sustainable form of energy for practical use as well as mitigate the effects of global warming and climate change. Ocean wave energy is an abundant and relatively stable source of renewable energy, which would be highly desirable for the conversion of CO2 to conveniently stored and transported liquid fuels. In this work, we demonstrate a wave-energy-driven electrochemical CO2 reduction system, consisting of triboelectric nanogenerators, a supercapacitor and a CO2 reduction reactor, that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. We optimize the energy storage component of the system and operation voltage of the electrochemical cell to achieve efficient energy storage and maximize the production of formic acid. Under simulated waves, the system can produce 2.798 mu mol of formic acid per day via the wave energy harvested from a water surface area of 0.04 m(2). Moreover, we have performed field tests in the Red Sea to demonstrate the practicality of such an electrochemical CO2 reduction system. Finally, we present design guidelines for achieving a cost-effective, efficient, and large-scale wave-energy-driven CO2 reduction system for liquid fuel production.
引用
收藏
页码:1300 / 1308
页数:9
相关论文
共 36 条
[1]   Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy [J].
Ahmed, Abdelsalam ;
Saadatnia, Zia ;
Hassan, Islam ;
Zi, Yunlong ;
Xi, Yi ;
He, Xu ;
Zu, Jean ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[2]   Solar photovoltaics demand for the global energy transition in the power sector [J].
Breyer, Christian ;
Bogdanov, Dmitrii ;
Aghahosseini, Arman ;
Gulagi, Ashish ;
Child, Michael ;
Oyewo, Ayobami Solomon ;
Farfan, Javier ;
Sadovskaia, Kristina ;
Vainikka, Pasi .
PROGRESS IN PHOTOVOLTAICS, 2018, 26 (08) :505-523
[3]   Formic Acid as a Hydrogen Energy Carrier [J].
Eppinger, Jorg ;
Huang, Kuo-Wei .
ACS ENERGY LETTERS, 2017, 2 (01) :188-195
[4]   Wave energy utilization: A review of the technologies [J].
Falcao, Antonio F. de O. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) :899-918
[5]   A review of wave-energy extraction [J].
Falnes, Johannes .
MARINE STRUCTURES, 2007, 20 (04) :185-201
[6]   Economics of converting renewable power to hydrogen [J].
Glenk, Gunther ;
Reichelstein, Stefan .
NATURE ENERGY, 2019, 4 (03) :216-222
[7]   Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate [J].
Han, Na ;
Wang, Yu ;
Yang, Hui ;
Deng, Jun ;
Wu, Jinghua ;
Li, Yafei ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2018, 9
[8]   Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy [J].
Jiang, Tao ;
Yao, Yanyan ;
Xu, Liang ;
Zhang, Limin ;
Xiao, Tianxiao ;
Wang, Zhong Lin .
NANO ENERGY, 2017, 31 :560-567
[9]   Troubling milestone for CO2 [J].
Jones, Nicola .
NATURE GEOSCIENCE, 2013, 6 (08) :589-589
[10]   Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte [J].
Lee, Chan Woo ;
Hong, Jung Sug ;
Yang, Ki Dong ;
Jin, Kyoungsuk ;
Lee, Jun Ho ;
Ahn, Hyo-Yong ;
Seo, Hongmin ;
Sung, Nark-Eon ;
Nam, Ki Tae .
ACS CATALYSIS, 2018, 8 (02) :931-937