Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements

被引:19
作者
Alandejani, Faisal [1 ]
Alabed, Samer [1 ,2 ]
Garg, Pankaj [3 ]
Goh, Ze Ming [1 ]
Karunasaagarar, Kavita [4 ]
Sharkey, Michael [1 ,4 ]
Salehi, Mahan [1 ]
Aldabbagh, Ziad [1 ]
Dwivedi, Krit [1 ]
Mamalakis, Michail [1 ]
Metherall, Pete [4 ]
Uthoff, Johanna [5 ]
Johns, Chris [1 ]
Rothman, Alexander [1 ,2 ,6 ]
Condliffe, Robin [6 ]
Hameed, Abdul [1 ,6 ]
Charalampoplous, Athanasios [6 ]
Lu, Haiping [2 ,5 ]
Plein, Sven [7 ,8 ]
Greenwood, John P. [7 ,8 ]
Lawrie, Allan [1 ]
Wild, Jim M. [1 ,2 ]
de Koning, Patrick J. H. [9 ]
Kiely, David G. [1 ,2 ,6 ]
van der Geest, Rob [9 ]
Swift, Andrew J. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Infect Immun & Cardiovasc Dis, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Inst Silico Med, INSIGNEO, Sheffield, S Yorkshire, England
[3] Univ East Anglia, Norwich Med Sch, Norwich, Norfolk, England
[4] Sheffield Teaching Hosp NHS Fdn Trust, Radiol Dept, Sheffield, S Yorkshire, England
[5] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[6] Sheffield Teaching Hosp NHS Fdn Trust, Royal Hallamshire Hosp, Sheffield Pulm Vasc Dis Unit, Sheffield, S Yorkshire, England
[7] Univ Leeds, Multidisciplinary Cardiovasc Res Ctr MCRC, Clarendon Way, Leeds, W Yorkshire, England
[8] Univ Leeds, Biomed Imaging Sci Dept, Leeds Inst Cardiovasc & Metab Med, Clarendon Way, Leeds, W Yorkshire, England
[9] Leiden Univ, Div Image Proc, Dept Radiol, Med Ctr, Leiden, Netherlands
基金
英国惠康基金; 美国国家卫生研究院;
关键词
Right atrial area; Cardiovascular magnetic resonance; Convolutional neural networks; Artificial intelligence; Deep learning training; Clinical testing; Repeatability assessment; Mortality prediction; PROGNOSTIC VALUE; VENOUS-PRESSURE; PULMONARY; VOLUME; PREDICTORS; MORTALITY; DIAGNOSIS; STRAIN; MASS;
D O I
10.1186/s12968-022-00855-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. Methods A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). Results All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 +/- 3.5 cm(2), 91.2 +/- 4.5 cm(2) and 93.2 +/- 3.2 cm(2), respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 +/- 3.9 cm(2), 87.0 +/- 5.8 cm(2) and 91.8 +/- 4.8 cm(2). Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. Conclusion Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Cardiac-MRI Predicts Clinical Worsening and Mortality in Pulmonary Arterial Hypertension A Systematic Review and Meta-Analysis [J].
Alabed, Samer ;
Shahin, Yousef ;
Garg, Pankaj ;
Alandejani, Faisal ;
Johns, Christopher S. ;
Lewis, Robert A. ;
Condliffe, Robin ;
Wild, James M. ;
Kiely, David G. ;
Swift, Andrew J. .
JACC-CARDIOVASCULAR IMAGING, 2020, 14 (05) :931-942
[2]   Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance [J].
Augusto, Joao B. ;
Davies, Rhodri H. ;
Bhuva, Anish N. ;
Knott, Kristopher D. ;
Seraphim, Andreas ;
Alfarih, Mashael ;
Lau, Clement ;
Hughes, Rebecca K. ;
Lopes, Luis R. ;
Shiwani, Hunain ;
Treibel, Thomas A. ;
Gerber, Bernhard L. ;
Hamilton-Craig, Christian ;
Ntusi, Ntobeko A. B. ;
Pontone, Gianluca ;
Desai, Milind Y. ;
Greenwood, John P. ;
Swoboda, Peter P. ;
Captur, Gabriella ;
Cavalcante, Joao ;
Bucciarelli-Ducci, Chiara ;
Petersen, Steffen E. ;
Schelbert, Erik ;
Manisty, Charlotte ;
Moon, James C. .
LANCET DIGITAL HEALTH, 2021, 3 (01) :E20-E28
[3]   Echocardiographic Assessment of Estimated Right Atrial Pressure and Size Predicts Mortality in Pulmonary Arterial Hypertension [J].
Austin, Christopher ;
Alassas, Khadija ;
Burger, Charles ;
Safford, Robert ;
Pagan, Ricardo ;
Duello, Katherine ;
Kumar, Preetham ;
Zeiger, Tonya ;
Shapiro, Brian .
CHEST, 2015, 147 (01) :198-208
[4]   Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings [J].
Backhaus, Soeren J. ;
Staab, Wieland ;
Steinmetz, Michael ;
Ritter, Christian O. ;
Lotz, Joachim ;
Hasenfuss, Gerd ;
Schuster, Andreas ;
Kowallick, Johannes T. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2019, 21 (1)
[5]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[6]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[7]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[8]   Impact of Age and Diastolic Function on Novel, 4D flow CMR Biomarkers of Left Ventricular Blood Flow Kinetic Energy [J].
Crandon, Saul ;
Westenberg, Jos J. M. ;
Swoboda, Peter P. ;
Fent, Graham J. ;
Foley, James R. J. ;
Chew, Pei G. ;
Brown, Louise A. E. ;
Saunderson, Christopher ;
Al-Mohammad, Abdallah ;
Greenwood, John P. ;
van der Geest, Rob J. ;
Dall'Armellina, Erica ;
Plein, Sven ;
Garg, Pankaj .
SCIENTIFIC REPORTS, 2018, 8
[9]   SURVIVAL IN PATIENTS WITH PRIMARY PULMONARY-HYPERTENSION - RESULTS FROM A NATIONAL PROSPECTIVE REGISTRY [J].
DALONZO, GE ;
BARST, RJ ;
AYRES, SM ;
BERGOFSKY, EH ;
BRUNDAGE, BH ;
DETRE, KM ;
FISHMAN, AP ;
GOLDRING, RM ;
GROVES, BM ;
KERNIS, JT ;
LEVY, PS ;
PIETRA, GG ;
REID, LM ;
REEVES, JT ;
RICH, S ;
VREIM, CE ;
WILLIAMS, GW ;
WU, M .
ANNALS OF INTERNAL MEDICINE, 1991, 115 (05) :343-349
[10]   Increased Central Venous Pressure Is Associated With Impaired Renal Function and Mortality in a Broad Spectrum of Patients With Cardiovascular Disease [J].
Damman, Kevin ;
van Deursen, Vincent M. ;
Navis, Gerjan ;
Voors, Adriaan A. ;
van Veldhuisen, Dirk J. ;
Hillege, Hans L. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 53 (07) :582-588