Improved Abstraction for Clear Channel Assessment in ns-3 802.11 WLAN Model

被引:4
作者
Lanante, Leonardo, Jr. [1 ,4 ]
Roy, Sumit [2 ]
Carpenter, Scott E.
Deronne, Sebastien [3 ]
机构
[1] Kyushu Inst Technol, Kitakyushu, Fukuoka, Japan
[2] Univ Washington, Seattle, WA 98195 USA
[3] Telev Conf, Izegem, Belgium
[4] Univ Washington, ECE Dept, Seattle, WA 98195 USA
来源
PROCEEDINGS OF THE 2019 WORKSHOP ON NS-3 (WNS3 2019) | 2019年
关键词
Wi-Fi; Network Simulator 3 (ns-3); Carrier sense;
D O I
10.1145/3321349.3321353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An important challenge for ns-3 is to enable efficient performance evaluation of increasingly dense and heterogeneous networks, cognizant of cross-layer (specifically, Layers 1 & 2) interactions. In this work (a continuation of U. Washington efforts), we present improved physical layer abstractions for a key component underlying all 802.11 WLAN MAC performance evaluation - the Clear Channel Assessment (CCA) procedure central to CSMA/CA - for implementation in the ns-3 simulator. We model the preamble correlation process as typically implemented in 802.11 radio and represent the resulting probability of detection as a look-up table with a parameterized correlation threshold for different receive sensitivity strategies. Further, we also added a new carrier sense threshold adjustment mechanism to allow nodes to enable bypassing the default (and to date, fixed) -82dBm threshold. Such a capability aligns ns-3 for performance evaluation of dense networks equipped with new spatial reuse mechanisms. We demonstrate this via simulation of spatial reuse gains from dynamic sensitivity control (DSC) that are verified against IEEE 802.11ax standards group contributions. Using simulation results from a fixed rate multi-BSS network, we then identify valuable design guidelines to maximize the aggregate throughput with DSC.
引用
收藏
页码:49 / 56
页数:8
相关论文
共 15 条
[1]  
Bharghavan V., 1994, Computer Communication Review, V24, P212, DOI 10.1145/190809.190334
[2]  
Garcia-Villegas E, 2015, IEEE 80211 151316R3
[3]  
Giupponi L, 2016, Arxiv, DOI arXiv:1604.06826
[4]  
Heiskala J., 2001, OFDM Wireless Lans - A Theoretical and pratical guide
[5]  
IEEE Standard for Ethernet, 2018, IEEE Standard 802.3-2018, DOI [DOI 10.1109/IEEESTD.2018.8457469, 10.1109/IEEESTD.2018.8457469]
[6]  
Jamil I, 2014, IEEE 80211AX CONTRIB
[7]   Optimizing 802.11 Wireless Mesh Networks Based on Physical Carrier Sensing [J].
Ma, Hui ;
Vijayakumar, Rajiv ;
Roy, Sumit ;
Zhu, Jing .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2009, 17 (05) :1550-1563
[8]  
MatlabWLANToolbox, 2018, MATLABWLANTOOLBOX
[9]  
Mori M, 2015, 80211150652R1 IEEE
[10]  
ns-3 11ax Project, 2018, PUBL MIRR REP