共 11 条
Pixel Selection for Near-Infrared Chemical Imaging (NIR-CI) Discrimination Between Fish and Terrestrial Animal Species in Animal Protein By-Product Meals
被引:16
|作者:
Riccioli, Cecilia
[1
]
Perez-Marin, Dolores
[1
]
Emilio Guerrero-Ginel, Jose
[1
]
Saeys, Wouter
[2
]
Garrido-Varo, Ana
[1
]
机构:
[1] Univ Cordoba, Fac Agr & Forestry Engn, Dept Anim Prod, E-14071 Cordoba, Spain
[2] Katholieke Univ Leuven, Fac Biosci Engn, BIOSYST MeBioS, B-3001 Louvain, Belgium
关键词:
Protein animal by-products;
Near-infrared hyperspectral imaging;
Chemical imaging;
Pixel selection algorithms;
Partial least squares;
Discriminant analysis;
PLS;
DA;
FOOD QUALITY;
REFLECTANCE;
SPECTROSCOPY;
FEEDS;
REGRESSION;
IMAGES;
TOOL;
D O I:
10.1366/10-06177
中图分类号:
TH7 [仪器、仪表];
学科分类号:
0804 ;
080401 ;
081102 ;
摘要:
This paper proposes a method based on near-infrared hyperspectral imaging for discriminating between terrestrial and fish species In animal protein by-products used in livestock feed. Four algorithms (Mahalanobis distance, Kennard-Stone, spatial interpolation, and binning) were compared in order to select an appropriate subset of pixels for further partial least squares discriminant analysis (PLS-DA). The method was applied to a set of 50 terrestrial and 40 fish meals analyzed in the 1000 1700 nm range. Models were then tested using an external validation set comprising 45 samples (25 fish and 20 terrestrial). The PLS-DA models obtained using the four subset-selection algorithms yielded a classification accuracy of 99.80%, 99.79%, 99.85%, and 99.61%, respectively. The results represent a first step for the analysis of mixtures of species and suggest that NIR-CI, providing valuable information on the origin of animal components in processed animal proteins, is a promising method that could be used as part of the EU feed control program aimed at eradicating and preventing bovine spongiform encephalopathy (BSE) and related diseases.
引用
收藏
页码:771 / 781
页数:11
相关论文