Facile Synthesis of 1T-Phase MoS2 Nanosheets on N-Doped Carbon Nanotubes towards Highly Efficient Hydrogen Evolution

被引:8
|
作者
Wang, Kunjie [1 ]
Zhang, Jiahui [1 ]
Ye, Yachen [1 ]
Ma, Hongbin [1 ]
Liu, Bingxin [1 ]
Zhang, Peng [1 ]
Xu, Benhua [2 ]
机构
[1] Qinghai Univ, Qinghai Prov Engn Res Ctr High Performance Light, Qinghai Prov Key Lab New Light Alloys, Xining 810016, Peoples R China
[2] Qinghai Univ, Chem Engn Coll, Xining 810016, Peoples R China
基金
中国国家自然科学基金;
关键词
1T-MoS2; nanosheets; N-doped carbon nanotubes; hydrogen evolution reaction; water splitting; synergy effects; FEW-LAYER MOS2; BIFUNCTIONAL ELECTROCATALYST; GRAPHENE; NANOPARTICLES; INTERCALATION; CATALYST; BULK;
D O I
10.3390/nano11123273
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm(-2), a relatively low Tafel slope of 63 mV dec(-1), and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Formation of Ni-doped MoS2 nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution
    Dong, Tao
    Zhang, Xiao
    Wang, Peng
    Chen, Hsueh-Shih
    Yang, Ping
    ELECTROCHIMICA ACTA, 2020, 338
  • [2] Facile synthesis of Mn-doped MoS2 nanosheets on carbon nanotubes as efficient electrocatalyst for hydrogen evolution reaction
    Chen, Mengting
    Jian, Xiumei
    Wu, Huancheng
    Huang, Junying
    Liu, Weipeng
    Liu, Yingju
    NANOTECHNOLOGY, 2020, 31 (20)
  • [3] MoS2 nanosheets grown vertically on N-doped carbon nanotubes embedded CoP nanoparticles for efficient hydrogen evolution
    Wang, Tao
    Jia, Changchao
    Wang, Bo
    Yang, Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 813
  • [4] Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution
    Zhang, Xiao
    Yang, Ping
    Jiang, San Ping
    CARBON, 2021, 175 : 176 - 186
  • [5] Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction
    Chen, Xiaoling
    Zhang, Kangning
    An, Zhenzhen
    Wang, Lina
    Wang, Yan
    Sun, Sen
    Guo, Tong
    Zhang, Dongxia
    Xue, Zhonghua
    Zhou, Xibin
    Lu, Xiaoquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (15) : 7326 - 7337
  • [6] Two-Dimensional Confined Synthesis of Metastable 1T-Phase MoS2 Nanosheets for the Hydrogen Evolution Reaction
    Geng, Shize
    Ji, Yujin
    Jiang, Binbin
    Zhu, Wenxiang
    Yin, Kui
    Shao, Mingwang
    Liao, Fan
    Shi, Huixian
    Cheng, Yafei
    Li, Youyong
    Shao, Qi
    ACS APPLIED NANO MATERIALS, 2022, 5 (01) : 1377 - 1384
  • [7] MoS2/CoS2 heterostructures embedded in N-doped carbon nanosheets towards enhanced hydrogen evolution reaction
    Ji, Kang
    Matras-Postolek, Katarzyna
    Shi, Ruixia
    Chen, Ling
    Che, Quande
    Wang, Junpeng
    Yue, Yunlong
    Yang, Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
  • [8] Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution
    Chang, Kun
    Hai, Xiao
    Pang, Hong
    Zhang, Huabin
    Shi, Li
    Liu, Guigao
    Liu, Huimin
    Zhao, Guixia
    Li, Mu
    Ye, Jinhua
    ADVANCED MATERIALS, 2016, 28 (45) : 10033 - 10041
  • [9] Identifying the high activity of the basal plane in 1T-phase MoS2 towards electrochemical hydrogen evolution
    Shi, Yanmei
    Zhang, Bin
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (07): : 1490 - 1492
  • [10] Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution
    Yuelong Xu
    Ran Wang
    Zhan Liu
    Lili Gao
    Tifeng Jiao
    Zhenfa Liu
    Green Energy & Environment, 2022, 7 (04) : 829 - 839