Onsager's Scars in Disordered Spin Chains

被引:115
作者
Shibata, Naoyuki [1 ]
Yoshioka, Nobuyuki [1 ]
Katsura, Hosho [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, 7-3-1 Hongo, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Univ Tokyo, Transscale Quantum Sci Inst, 7-3-1 Hongo, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
ENERGY-LEVEL STATISTICS; MANY-BODY LOCALIZATION; BETHE-ANSATZ; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; DYNAMICS; THERMALIZATION; QUTIP; MODEL;
D O I
10.1103/PhysRevLett.124.180604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a class of nonintegrable quantum spin chains that exhibit quantum many-body scars even in the presence of disorder. With the use of the so-called Onsager symmetry, we construct scarred models for arbitrary spin quantum number S. There are two types of scar states, namely, coherent states associated with an Onsager-algebra element and one-magnon scar states. While both of them are highly excited states, they have area-law entanglement and can be written as a matrix product state. Therefore, they explicitly violate the eigenstate thermalization hypothesis. We also investigate the dynamics of the fidelity and entanglement entropy for several initial states. The results clearly show that the scar states are trapped in a perfectly periodic orbit in the Hilbert subspace and never thermalize, whereas other generic states do rapidly. To our knowledge, our model is the first explicit example of disordered quantum many-body scarred models.
引用
收藏
页数:6
相关论文
共 53 条
[1]   Eigenstate thermalization hypothesis and integrability in quantum spin chains [J].
Alba, Vincenzo .
PHYSICAL REVIEW B, 2015, 91 (15)
[2]   Entanglement entropy of excited states [J].
Alba, Vincenzo ;
Fagotti, Maurizio ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[3]  
Alhambra A. M., ARXIV191105637
[4]   EXCEPTIONAL SOLUTIONS TO THE BETHE ANSATZ EQUATIONS [J].
AVDEEV, LV ;
VLADIMIROV, AA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1071-1079
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems [J].
Biroli, Giulio ;
Kollath, Corinna ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[7]   On integrable Hamiltonians for higher spin XXZ chain [J].
Bytsko, AG .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3698-3717
[8]   Introduction to 'Quantum Integrability in Out of Equilibrium Systems' [J].
Calabrese, Pasquale ;
Essler, Fabian H. L. ;
Mussardo, Giuseppe .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[9]   ENERGY-LEVEL STATISTICS OF INTEGRABLE QUANTUM-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1350-1353
[10]   Generalized Thermalization in an Integrable Lattice System [J].
Cassidy, Amy C. ;
Clark, Charles W. ;
Rigol, Marcos .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)