Supports in Lipschitz-free spaces and applications to extremal structure

被引:26
作者
Aliaga, Ramon J. [1 ]
Pernecka, Eva [2 ]
Petitjean, Colin [3 ]
Prochazka, Antonin [4 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague 16000, Czech Republic
[3] Univ Paris Est Creteil, UPEM, Univ Gustave Eiffel, CNRS,LAMA, F-77447 Marne La Vallee, France
[4] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Exposed point; Extreme point; Lipschitz-free space; Lipschitz function; Support; DAUGAVET PROPERTY;
D O I
10.1016/j.jmaa.2020.124128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space Mis closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (delta(x) - delta(y))/d(x, y) is an exposed point of the unit ball of F(M) whenever the metric segment [x, y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterizethe extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 17 条
  • [1] On the preserved extremal structure of Lipschitz-free spaces
    Aliaga, Ramon J.
    Guirao, Antonio J.
    [J]. STUDIA MATHEMATICA, 2019, 245 (01) : 1 - 14
  • [2] [Anonymous], ARXIV190905285
  • [3] [Anonymous], REV MAT IBEROAM
  • [4] [Anonymous], 2001, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC
  • [5] ISOMETRIC REPRESENTATION OF LIPSCHITZ-FREE SPACES OVER CONVEX DOMAINS IN FINITE-DIMENSIONAL SPACES
    Cuth, Marek
    Kalenda, Ondiej F. K.
    Kaplicky, Petr
    [J]. MATHEMATIKA, 2017, 63 (02) : 538 - 552
  • [6] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [7] FREE SPACES OVER COUNTABLE COMPACT METRIC SPACES
    Dalet, A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) : 3537 - 3546
  • [8] A characterisation of the Daugavet property in spaces of Lipschitz functions
    Garcia-Lirola, Luis
    Prochazka, Antonin
    Rueda Zoca, Abraham
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 473 - 492
  • [9] Extremal Structure and Duality of Lipschitz Free Spaces
    Garcia-Lirola, Luis
    Petitjean, Colin
    Prochazka, Antonin
    Rueda Zoca, Abraham
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [10] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141