Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems

被引:46
作者
Eguizabal, A. [1 ]
Lemus, J. [1 ]
Urbiztondo, M. [1 ]
Garrido, O. [2 ]
Soler, J. [1 ]
Blazquez, J. A. [2 ]
Pina, M. P. [1 ]
机构
[1] Univ Zaragoza, Inst Nanociencia Aragon, Zaragoza 50018, Spain
[2] CIDETEC IK4 Ctr Tecnol Electroquim, San Sebastian 20009, Spain
关键词
High temperature PEM; Porous hybrid PBI based membranes; Sulfonic functionalization; Microporous fillers; Transport selectivity; ACID DOPED POLYBENZIMIDAZOLE; PHOSPHORIC-ACID; PHYSICOCHEMICAL PROPERTIES; NANOCOMPOSITE MEMBRANES; COMPOSITE MEMBRANES; CONDUCTIVITY; SEPARATION; PBI; BLENDS;
D O I
10.1016/j.jpowsour.2011.03.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel hybrid membranes based on polybenzimidazole (PBI) and ETS-10 titanosilicate type materials functionalized with sulfonic groups have been developed for high temperature PEMFC applications. In particular, 45% porous ETS-10/PBI electrolyte membranes in porosity have been reported for the first time in this work. A clear conduction outperforming is shown by porous PBI + 3 wt.% SO3H-ETS-10 doped at 50 degrees C, attaining "in-plane" conductivity values up to 74 mS cm(-1) at 180 degrees C under dry N-2 flow. The transport selectivity of the as prepared dense and porous PBI based membranes has been evaluated by comparison of "in-plane" conductivity/methanol permeability values at 50 degrees C. 100 degrees C and 150 degrees C. Accounting from that, dense pure PBI membranes are preferred at 50 degrees C (4.7 x 10(6) S.s.bar mol(-1)); whereas at 150 degrees C, dense PBI + 3% SO3H-ETS-10 counterparts exhibit the higher conductivity/methanol permeability ratio (2.5 x 10(8) S.s.bar mol(-1)). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:8994 / 9007
页数:14
相关论文
共 36 条
[1]   Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications [J].
Alcaide, Francisco ;
Alvarez, Garbine ;
Ganborena, Larraitz ;
Iruin, Juan J. ;
Miguel, Oscar ;
Blazquez, J. Alberto .
POLYMER BULLETIN, 2009, 62 (06) :813-827
[2]  
[Anonymous], 2010, Energy 2020. A strategy for competitive, sustainable and secure energy
[3]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[4]  
BLAZQUEZ A, 2010, Patent No. 2010064857
[5]   Water alignment, dipolar interactions, and multiple proton occupancy during water-wire proton transport [J].
Chou, T .
BIOPHYSICAL JOURNAL, 2004, 86 (05) :2827-2836
[6]   Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells [J].
Chuang, Shih-Wei ;
Hsu, Steve Lien-Chung ;
Liu, Yen-Hsin .
JOURNAL OF MEMBRANE SCIENCE, 2007, 305 (1-2) :353-363
[7]   Synthesis and properties of fluorine-containing polybenzi.midazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications [J].
Chuang, Shih-Wei ;
Hsu, Steve Lien-Chung ;
Hsu, Chiao-Ling .
JOURNAL OF POWER SOURCES, 2007, 168 (01) :172-177
[8]   Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors [J].
He, RH ;
Li, QF ;
Xiao, G ;
Bjerrum, NJ .
JOURNAL OF MEMBRANE SCIENCE, 2003, 226 (1-2) :169-184
[9]   Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells [J].
He, Ronghuan ;
Li, Qingfeng ;
Bach, Anders ;
Jensen, Jens Oluf ;
Bjerrum, Niels J. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 277 (1-2) :38-45
[10]   Proton conductivity: Materials and applications [J].
Kreuer, KD .
CHEMISTRY OF MATERIALS, 1996, 8 (03) :610-641