Emerging ECG methods for acute coronary syndrome detection: Recommendations & future opportunities

被引:15
作者
Al-Zaiti, Salah [1 ]
Macleod, Robert [2 ]
Van Dam, Peter [3 ]
Smith, Stephen W. [4 ,5 ]
Birnbaum, Yochai [6 ]
机构
[1] Univ Pittsburgh, Dept Acute & Tertiary Care, Pittsburgh, PA USA
[2] Univ Utah, Dept Biomed Engn, Salt Lake City, UT USA
[3] Univ Med Ctr Utrecht, Dept Cardiol, Utrecht, Netherlands
[4] Hennepin Healthcare, Dept Emergency Med, Minneapolis, MN USA
[5] Univ Minnesota, Minneapolis, MN USA
[6] Baylor Coll Med, Div Cardiol, Houston, TX 77030 USA
关键词
Myocardial ischemia; Acute coronary syndrome; ECG; Machine learning; Novel markers; ELEVATION MYOCARDIAL-INFARCTION; ST-SEGMENT; VENTRICULAR REPOLARIZATION; LEADS VSLS; OCCLUSION; INTERVENTION; VALIDATION; ISCHEMIA; ARTERY; RISK;
D O I
10.1016/j.jelectrocard.2022.08.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Despite being the mainstay for the initial noninvasive assessment of patients with symptomatic coronary artery disease, the 12-lead ECG remains a suboptimal diagnostic tool for myocardial ischemia detection with only acceptable sensitivity and specificity scores. Although myocardial ischemia affects the configuration of the QRS complex and the STT waveform, current guidelines primarily focus on ST segment amplitude, which constitutes a missed opportunity and may explain the suboptimal diagnostic performance of the ECG. This possible opportunity and the low cost and ease of use of the ECG provide compelling motivation to enhance the diagnostic accuracy of the ECG to ischemia detection. This paper describes numerous computational ECG methods and approaches that have been shown to dramatically increase ECG sensitivity to ischemia detection. Briefly, these emerging approaches can be conceptually grouped into one of the following four approaches: (1) leveraging novel ECG waveform features and signatures indicative of ischemic injury other than the classical ST-T amplitude measures; (2) applying body surface potentials mapping (BSPM)-based approaches to enhance the spatial coverage of the surface ECG to detecting ischemia; (3) developing an inverse ECG solution to reconstruct anatomical models of activation and recovery pathways to detect and localize injury currents; and (4) exploring artificial intelligence (AI)-based techniques to harvest ECG waveform signatures of ischemia. We present recent advances, shortcomings, and future opportunities for each of these emerging ECG methods. Future research should focus on the prospective clinical testing of these approaches to establish clinical utility and to expedite potential translation into clinical practice.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 52 条
[1]   National trends in chest pain visits in US emergency departments (2006-2016) [J].
Aalam, Ahmad A. ;
Alsabban, Awad ;
Pines, Jesse M. .
EMERGENCY MEDICINE JOURNAL, 2020, 37 (11) :696-+
[2]   Diagnostic and prognostic values of the V-index, a novel ECG marker quantifying spatial heterogeneity of ventricular repolarization, in patients with symptoms suggestive of non-ST-elevation myocardial infarction [J].
Abacherli, Roger ;
Twerenbold, Raphael ;
Boeddinghaus, Jasper ;
Nestelberger, Thomas ;
Machler, Patrick ;
Sassi, Roberto ;
Rivolta, Massimo W. ;
Roonizi, Ebadollah Kheirati ;
Mainardi, Luca T. ;
Kozhuharov, Nikola ;
Gimenez, Maria Rubini ;
Wildi, Karin ;
Grimma, Karin ;
Sabti, Zaid ;
Hillinger, Petra ;
Puelacher, Christian ;
Strebel, Ivo ;
Cupa, Janosch ;
Badertscher, Patrick ;
Roux, Isabelle ;
Schmid, Ramun ;
Leber, Remo ;
Osswald, Stefan ;
Mueller, Christian ;
Reichlin, Tobias .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 236 :23-29
[3]  
Ahmad A, 2022, J AM COLL CARDIOL, V79, P150
[4]   Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review [J].
Al Hinai, Ghalib ;
Jammoul, Samer ;
Vajihi, Zara ;
Afilalo, Jonathan .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (03) :416-423
[5]   Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram [J].
Al-Zaiti S. ;
Besomi L. ;
Bouzid Z. ;
Faramand Z. ;
Frisch S. ;
Martin-Gill C. ;
Gregg R. ;
Saba S. ;
Callaway C. ;
Sejdić E. .
Nature Communications, 11 (1)
[6]   Spatial indices of repolarization correlate with non-ST elevation myocardial ischemia in patients with chest pain [J].
Al-Zaiti, Salah ;
Sejdic, Ervin ;
Nemec, Jan ;
Callaway, Clifton ;
Soman, Prem ;
Lux, Robert .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (01) :1-12
[7]   A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML) [J].
Al-Zaiti, Salah S. ;
Alghwiri, Alaa A. ;
Hu, Xiao ;
Clermont, Gilles ;
Peace, Aaron ;
Macfarlane, Peter ;
Bond, Raymond .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :125-140
[8]   Comparison of clinical risk scores for triaging high-risk chest pain patients at the emergency department [J].
Al-Zaiti, Salah S. ;
Faramand, Ziad ;
Alrawashdeh, Mohammad O. ;
Sereika, Susan M. ;
Martin-Gill, Christian ;
Callaway, Clifton .
AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2019, 37 (03) :461-467
[9]   Evaluation of beat-to-beat ventricular repolarization lability from standard 12-lead ECG during acute myocardial ischemia [J].
Al-Zaiti, Salah S. ;
Alrawashdeh, Mohammad ;
Martin-Gill, Christian ;
Callaway, Clifton ;
Mortara, David ;
Nemec, Jan .
JOURNAL OF ELECTROCARDIOLOGY, 2017, 50 (06) :717-724
[10]   Rationale, development, and implementation of the Electrocardiographic Methods for the Prehospital Identification of Non-ST Elevation Myocardial Infarction Events (EMPIRE) [J].
Al-Zaiti, Salah S. ;
Martin-Gill, Christian ;
Sejdic, Ervin ;
Alrawashdeh, Mohammad ;
Callaway, Clifton .
JOURNAL OF ELECTROCARDIOLOGY, 2015, 48 (06) :921-926