A splitting method for a stochastic Goursat problem

被引:10
作者
Anh, VV
Grecksch, W
Wadewitz, A
机构
[1] Queensland Univ Technol, Ctr Stat Sci & Ind Math, Brisbane, Qld 4001, Australia
[2] Univ Halle Wittenberg, Inst Optimierung & Stochast, Fachbereich Math & Informat, D-06120 Halle, Germany
关键词
D O I
10.1080/07362999908809603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an approximation of a stochastic Goursat problem by splitting it into a sequence of deterministic Goursat problems with random boundary conditions and a sequence of Ito integrals, where both sequences are coupled by initial conditions. The solutions of these problems are shown to converge in mean square to the solution of the stochastic Goursat problem.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 11 条
[1]  
ANH VV, 1997, STOCH ANAL APPL, V15
[2]   APPROXIMATION OF THE ZAKAI EQUATION BY THE SPLITTING UP METHOD [J].
BENSOUSSAN, A ;
GLOWINSKI, R ;
RASCANU, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (06) :1420-1431
[3]  
GIKMAN II, 1976, THEORY RANDOM PROCES, V4, P40
[4]  
GLOWINSKI R, 1989, AUGMENTED LARGRANGIA
[5]  
Grecksch W, 1996, COMPUT APPL MATH, V15, P227
[6]   Time-discretised galerkin approximations of parabolic stochastic PDES [J].
Grecksch, W ;
Kloeden, PE .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (01) :79-85
[7]  
Grecksch W., 1995, Stochastic Evolution Equations: A Hilbert Space Approach
[8]  
Gyongy I., 1988, Stochastics, V25, P59, DOI 10.1080/17442508808833533
[9]  
KRYLOV NU, 1979, ITOGI NAUKI TECHNIKI, V14, P71
[10]  
PONOMARENKO LL, 1971, TEOR VER I MAT STAT, V2, P100