GLOBAL AND BLOW-UP SOLUTIONS FOR NONLINEAR PARABOLIC EQUATIONS WITH A GRADIENT TERM

被引:0
|
作者
Ding, Juntang [1 ,2 ]
Guo, Bao-Zhu [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2011年 / 37卷 / 04期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Parabolic equation; gradient term; global solution; blow-up solution; SELF-SIMILAR SUBSOLUTIONS; BOUNDARY-CONDITIONS; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the following nonlinear parabolic equation with a gradient term and Neumann boundary condition: {(b(u))(t) = del . (a(u)del u) + f(x, u,vertical bar del u vertical bar(2), t) in D x (0, T), partial derivative u/partial derivative n = 0 on partial derivative D x (0,T), u(x,0) = u(0)(x)>0 in (D) over bar, where D subset of R-N (N >= 2) is a bounded domain of R-N with smooth boundary partial derivative D. The upper and lower solution technique is adopted in investigations. The sufficient conditions for the existence of global positive solution and an upper estimate of global solution are given. Moreover, under some appropriate assumptions on the functions a, b, and f, we prove the existence of blow-up positive solution. An upper bound of "blow-up time" is also presented.
引用
收藏
页码:1265 / 1277
页数:13
相关论文
共 50 条