Framed curves in three-dimensional Lie groups and a Berry phase model

被引:7
|
作者
Yazici, Bahar Dogan [1 ]
Okuyucu, Osman Zeki [1 ]
Tosun, Murat [2 ]
机构
[1] Bilecik Seyh Edebali Univ, Dept Math, TR-11200 Bilecik, Turkey
[2] Sakarya Univ, Dept Math, TR-54000 Sakarya, Turkey
关键词
Lie groups; Framed curves; Adapted frames; Optical fiber; Berry; -phase; Polarization vector;
D O I
10.1016/j.geomphys.2022.104682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce framed curves which can have singular points in three-dimensional Lie groups. We give Frenet-Serret type formulas of framed curves with the help of a Lie curvature in three-dimensional Lie groups. Then, we define adapted frames of framed curves in three-dimensional Lie groups such that Frenet-Serret type frame and Bishop frame. Finally, as a physical application, we give Berry phase model of polarized light wave along an optical fiber in Lie groups. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Berry phase for a three-dimensional anisotropic quantum dot
    Geyler, VA
    Shorokhov, A
    PHYSICS LETTERS A, 2005, 335 (01) : 1 - 10
  • [22] Classification of real three-dimensional Lie bialgebras and their Poisson-Lie groups
    Rezaei-Aghdam, A
    Hemmati, M
    Rastkar, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (18): : 3981 - 3994
  • [23] Berry's phase for compact Lie groups
    Strahov, E
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) : 2008 - 2022
  • [24] Control Systems on Three-Dimensional Lie Groups: Equivalence and Controllability
    Rory Biggs
    Claudiu C. Remsing
    Journal of Dynamical and Control Systems, 2014, 20 : 307 - 339
  • [25] Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups
    Azami, Shahroud
    Jafari, Mehdi
    Haseeb, Abdul
    Ahmadini, Abdullah Ali H.
    AXIOMS, 2024, 13 (04)
  • [26] K1-congruences for three-dimensional Lie groups
    Delbourgo, Daniel
    Chao, Qin
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (01): : 161 - 211
  • [27] Classification of generalized Einstein metrics on three-dimensional Lie groups
    Cortes, Vicente
    Krusche, David
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (06): : 2038 - 2095
  • [28] INVARIANT NONHOLONOMIC RIEMANNIAN STRUCTURES ON THREE-DIMENSIONAL LIE GROUPS
    Barrett, Dennis I.
    Biggs, Rory
    Remsing, Claudiu C.
    Rossi, Olga
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (02): : 139 - 167
  • [29] Control Systems on Three-Dimensional Lie Groups: Equivalence and Controllability
    Biggs, Rory
    Remsing, Claudiu C.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2014, 20 (03) : 307 - 339
  • [30] Affine Ricci Solitons of Three-Dimensional Lorentzian Lie Groups
    Yong Wang
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 277 - 291