Fourier integral operators and Gelfand-Shilov spaces

被引:0
作者
Cappiello, M [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
Recent Advances in Operator Theory and Its Applications: The Israel Gohberg Anniversary Volume | 2005年 / 160卷
关键词
Fourier integral operators; theta-wave front set; Gelfand-Shilov spaces;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we study a class of Fourier integral operators of infinite order acting on the Gelfand-Shilov spaces of type S. We also define wave front sets in terms of Gelfand-Shilov classes and study the action of the previous Fourier integral operators on them.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 34 条
  • [1] Cappiello M., 2003, REND SEM MAT U POL T, V61, P411
  • [2] CAPPIELLO M, 2003, IN PRESS TSUKUBA J M
  • [3] CAPPIELLO M, 2003, P 3 INT ISAAC C SING, V1, P681
  • [4] CARDIN F, 2004, LACK CRITICAL PHASE
  • [5] CATTABRIGA L, 1990, J MATH KYOTO U, V30, P142
  • [6] Cordes H. O., 1995, TECHNIQUE PSEUDODIFF
  • [7] Wave front set at infinity and hyperbolic linear operators with multiple characteristics
    Coriasco, S
    Maniccia, L
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (04) : 375 - 400
  • [8] Coriasco S, 2002, MATH NACHR, V242, P61, DOI 10.1002/1522-2616(200207)242:1<61::AID-MANA61>3.0.CO
  • [9] 2-4
  • [10] Coriasco S., 1999, RICERCHE MAT S, V48, P25